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Abstract

The finite element method was used to solve the nonlinear,

small-disturbance, transonic, velocity-potential equation for problems

of steady flow over a circular cylinder and over a thin-airfoil in a

uniform steady airstream. The governing differential equation is valid

for inviscid, irrotational, isentropic flow of a perfect gas to in-

clude weak shocks providing airflow separation does not occur. For

compressible subsonic and transonic flows the nonlinear small-disturbance

equation was expressed in iterative form as a sequence of linear equa-

tions which was solved iteratively until the difference between two

successive solutions became arbitrarily small. For analysis purposes

the infinite flowfield was replaced by a finite but sufficiently large

domain that was discretized with sector elements for the cylinder pro-

blem and rectangular elements for the airfoil problem. The finite

element equations were obtained from Galerkin's Method of Weighted

Residuals. Boundary conditions of the Neumann type were imposed along

the surface contour of the cylinder and along an approximate boundary

in accordance with classical thin-airfoil theory for the airfoil. For

both problems Dirichlet conditions were imposed along the farfield

boundary from an asymptotic solution which satisfies the actual infinity

condition and is valid in the farfield.

Three sub-problems were investigated for the circular cylinder.

First, three different types of trial functions were investigated to

approximate the solution for the velocity potential function for the

case of incompressible flow without circulation. The three trial

functions were: (1) a trignometric approximation resulting in a
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non-conforming element, (2) a bilinear polynomial (conforming element)

typical of elements used in finite element analyses, and (3) a

rational approximation resulting in a new conforming element. Con-

vergence properties of each element were studied as a function of dis-

cretization refinement (element size). The new element proved to have

superior properties for the problem solved.

The second subproblem for the cylinder was to use the two conform-

ing elements to obtain solutions for incompressible flow with circulation.

Superposition was used to split the total problem into two elementary

component problems. The value of circulation was determined by en-

forcing the stagnation or Kutta condition after each component solution

was found. An optimm way to select and refine the discretization was

discovered to insure that the error in circulation was kept to a

minimum.

The third subproblem for the cylinder was to solve the compressi-

ble flow problem without circulation using the new element. In the

strict sense, the small-disturbance equation is not valid for compressi-

ble potential flow over a cylinder; however, the problem is mathematically

well-posed with its use. The iterative solution scheme converged

rapidly for subsonic flows, but failed to converge for transonic flows

when the supersonic zone engulfed one or more complete elenents. Pre-

dictions of the critical Mach number and subsonic velocity distributions

are compared with known results.

Convergence of iterative finite element solution schemes for

transonic (mixed-elliptic-hyperbolic) flows was investigated for the

airfoil problem. An examination was made of the divergence behavior

of solution schemes reported by other investigators who have used

xi



finite element formulations similar to those used in this study. As a

result of this examination an iterative solution procedure was developed

which permitted convergence of solution schemes for mixed (transonic)

flows. The procedure includes a new "upwinding" technique that accounts

for the proper zone of influence for elements in the supersonic

(hyperbolic) region. Governed by two parameters, the new technique

alters the finite element formulation to exclude the influence of itera-

tive downwind forces on the solution at upwind nodes. The "upwinding"

technique not only "arrests" the divergence behavior of the solution

scheme, but also "captures" the weak compression shock which forms

automatically without the use of shock elements.

Known results from experimental data, classical solutions, finite

difference solutions, and other finite element solutions are compared

with the finite element solutions obtained in this study. Comparisons

of velocity and pressure distributions are given for cases of incompressi-

ble flow and compressible subsonic and transonic flows.

xii



PREDICTION OF AERODYNAMIC FORCES ON A CIRCULAR CYLINDER

AND A THIN AIRFOIL IN A TRANSONIC AIRSTREAM

BY THE FINITE ELEVENT METHOD

I Introduction

Analysis of transonic flow is one of the most challenging problems

in potential aerodynamics today due to the nonlinear nature and mixed

character of the flow. Transonic flow may occur with modern aircraft

during flight maneuvers, encounters with atmospheric turbulence or wind

gusts, and during accelerations to supersonic speeds. Many fighter

aircraft, for example, often endure extensive portions of their mission

profile at transonic speeds. During these periods violent oscillatory

motion may occur which could pose a hazard to flight. Thus, the need

is evident for accurate and reliable methods of analysis to predict

aerodynamic loads at transonic speeds.

A renewed interest in transonic flow is manifest by the rather

large volume of technical papers that have appeared in the literature

within the last fifteen years. Several methods of analysis have been

developed, but perhaps those most extensively used today are finite

difference methods. The majority of these methods are devoted to two-

dimensional potential flow analysis, although the flow is more complex

in nature. This simplifying position is justifiable to some degree

since selection of suitable section shapes has always been one of the

stages in the design process for aircraft wings and helicopter blades.



For design purposes, and for many other problems of engineering

interest, the flow about a body may be adequately described by potential

aerodynamics and small disturbance theory (Ref 1). Consequently, a

large portion of the technical papers on transonic flow adopt this

simplifying position. The assumptions of two-dimensional, inviscid,

irrotational, isentropic flow drastically simplify the coupled basic

equations of fluid mechanics. Introducing a velocity potential produces

a single, governing, second-order, nonlinear, partial differential

equation which is valid for flows with weak shocks. Small disturbance

approximations provide further reduction in analytical complexity.

Errors in pressure distributions resulting from these assumptions are

not severe except at stagnation points, at large angles of attack, or

when extensive airflow separation occurs.

Within the last eight years a relatively new method of analysis has

been used to solve potential aerodynamics problems. This new method

was originally developed by structural engineers and is known as the

Finite Element Method (FEM). Its application to airfoil analysis is

currently being investigated by both the aircraft industry and govern-

mental agencies.

Previous and Recent Works

Perhaps the first paper to propose the use of finite elements for

field problems involving Laplace and Poisson equations was by

Zienkiewiez and Cheung in 1965 (Ref 2). It was three years later before

the FEM was used to solve an aerodynamics problem. Martin (Ref 3) used

linear triangular elements and a variational principle to solve for the

stream function for incompressible flow over a circular cylinder located

2



between parallel walls. Within a year Norrie and deVries (Ref 4-8)

developed finite element techniques to solve incompressible problems

for flow over single and cascading airfoils. They fornmulated the

problem in terms of the velocity potential and used linear triangular

* elements along with a variational principle to obtain the finite element

equations. They also made liberal uses of the superposition principle.

For example, the problem of lifting flow over an airfoil was divided

into thickness and lifting parts, each of which was solved by the FEM.

The solutions were linearly combined and the Kutta condition applied

to specify the circulation. Unfortunately, they were not able to present

many computational examples due to computer limitations.

Shen (Ref 9) published an interesting paper with intent to "bring

the maximum anount of a priori information theoretical and analytical,

so as to minimize the chore that must be done numerically in the Finite

Element Method." He formulated the problem of incompressible flow over

a lifting airfoil in terms of the stream function and used a variational

principle. Shen modeled the infinite domain with an inner and outer

patching technique similar to that used in finite difference relaxation

schemes (Ref 10). The infinite domain was divided into two super-

elements or patches. The inner patch contained the airfoil and a portion

of the flow field extending from the airfoil to some arbitrary but

sufficiently large distance from it. The outer patch completed the

infinite flowfield within which an analytically obtained asymptotic

solution with undetermined parameters was used. The FEM was used to

obtain the solution only in the inner patch. Globally the two

solutions were matched along the common boundary separating the two

patches. Shen presented some results for the circular cylinder and

I



Joukowski airfoils using linear triangular elements, but stated, "in

actual implementation of the finite elemnt method for the inner patch,

many details remain that affect the accuracy of the results."

For steady, compressible, potential flow over an arbitrary body

additional difficulties appear. The exact governing equation is non-

linear, and when the free stream Mach number becomes large enough,

bubbles of supersonic fiow may appear over a portion of the body. For

totally subsonic flow Periaux (Ref 11) was successful in using linear

and quadratic triangular elements combined with an iterative solution

algorithm to solve for potential flow over airfoils. Solutions were

obtained from both velocity potential and stream function formulations

by minimization of functionals. Shen and Habashi (Ref 12) noted that

solutions derived from variational principles would not converge for

supercritical Mach numbers. They proposed a local linearization of

the problem which could be formulated in terms of either the stream

function or the velocity potential function. The local governing dif-

ferential equation for the local perturbation velocity potential

was shown to be the linear small-disturbance equation ( - 0

The elemental Mach number M was taken to be con-

stant in element e and was calculated from the previous iteration.

Coordinates (t ,2) were aligned parallel and normal to the previous

iteration of the streamlines. They then used linear triangular elements

and the Prandtl-Glauert transformation to solve for compressible flow

over a circular cylinder without circulation. Flowfields for airfoil

problems were discretized by a mapping procedure using the inverse

Joukowski transformation. Their results converged for compressible

flow to include a small supersonic bubble, but were valid only for

4



Mach nunbers near the critical values.

To date the mst extensive application of the FEM for airfoil

analysis was done by Chan and Brashears (Refs 13-17). In their initial

4 wrk the small-disturbance velocity potential equation was solved for

the cases of: incompressible flow about a lifting airfoil, steady

compressible subsonic and transonic flows about a nonlifting airfoil,

and unsteady transonic flow about an airfoil that is harmonically

oscillating about a nonlifting mean state. The finite element solution

was obtained with cubic triangular elements using Galerkin's method

of weighted residuals. For steady compressible flow the governing

differential equation was cast into an equation of the Poisson type for

which finite element equations were constructed and solved by iterative

algorithms. The infinite domain was divided into two sub-domains or

patches as described previously. A solution was obtained in the inner

patch by finite element techniques with farfield boundary conditions

specified by the farfield expressions of Klimker (Ref 18). The un-

steady transonic flow problem was treated as a sum of two problems after

Landahl (Ref 19): (1) the non-linear transonic flow problem about a

mean steady position, and (2) a linear oscillation problem about the

mean steady position. Generally speaking, velocity and pressure distri-

butions compared well with other analytical or experimental data for

nonlifting subsonic flows. For steady transonic flow, the iterative

Galerkin formulation failed to converge and was abandoned in later

efforts. For lifting cases the finite element solutions did not

compare as well with known results as solutions did for nonlifting flows.

The major difficulties encountered were determining correct values of

circulation and accurate estimates of the pressure distributions near

5



the leading and trailing edges. Predictions of pressure distributions

for unsteady flows were only quantitatively comparable with experimentalI results.
In later works Chan and Brashears (Refs 15-17) abandoned the

Galerkin formulation used in their earlier work. They tried several

techniques to eliminate the improper downwind influences upon the solu-

tion at upwind supersonic nodes, but were unsuccessful when the Galerkin

method was used. They, instead, adopted the least squares method of

weighted residuals, but unfortunately used elements which were not

compatible with the new formulation.

Recently, alternative implicit velocity formulations for small-

disturbance theory have been suggested by Wellford & Hafez (Refs 20-21),

Ecer (Ref 22), and Aziz (Ref 23). In order to make solutions converge,

Wellford suggested adding time dependent and explicit artificial vis-

cosity terms to the governing differential equations, expressed in

terms of the velocity perturbations. Akay (Ref 24) presents a finite

element model for the full, two-dimensional, potential equations using

variational principles. Solutions for subcritical flows showed good

agreement with experimental data, but failed for mixed flows. The use

of artificial viscosity, both explicit and implicit, was introduced in

the analysis to prevent divergence of solutions. The addition of

viscosity caused an oscillation about some solution in the solution

algorithm used, but it did not provide convergence in the absolute sense.

Objective

The purpose of this work was to use the finite element method

(FEM) to predict surface pressure distributions for two-dimensional,

6
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-ow 1

potential flow over bodies in an infinite uniform flowfield for incom-

pressible and compressible flows that include the transonic regime with

weak shocks. The Galerkin method of weighted residuals, abandoned by

Chan and Brashears, was used with appropriate conforming "lower" order

elements. The principle objective of this study was to make as many

simplifying assumptions as possible in both the flow mdel and the

numerical approximation procedure, and determine whether a "simple"

Galerkin approach is acceptable for solving a rather complicated, non-

linear, mixed-flow problem in an urjounded region where discontinuities

and singularities may exist.

This study was divided "]-tto two parts. flow over a circular

cylinder and flow over .. rfoil. One of the original intents of

the stuoy was to examine some of the characteristics of the FEM's

application to potential flow problems. Although this intent was

modified, it was accomplished, in part, with the circular cylinder

problem. Three different elements were used, representing conforming

and non-conforming elements. Trial solutions for bilinear, rational,

and trignometric approximations were examined. Properties of flow

field discretization and application of boundary conditions were

examined.

The numerical procedure for solving the velocity potential

equation for transonic flows was confined to the airfoil problem.

Small disturbance theory and approximations from classical thin-

airfoil theory were used. The purpose for examining the transonic

regime was to investigate convergence problems reported by other

investigators, and attempt to develop a technique to account for the

proper zone of influence in the supersonic region. If an adequate

7



method could be developed to exclude the downwind influence on the

solution at upwind supersonic nodes, then the Galerkin procedure would

not have to be abandoned as concluded by Chan and Brashears.

The Finite Element Method (Background Information). The finite element

method was developed about 25 years ago by structural engineers to

analyze complex structural systems. An engineering structure can be

thought of as a collection of discrete elements that are inter-connected

at a finite number of locations. For example, a simple pin-connected

truss can be modeled by axial-rod elements. For a given static loading,

the enforcement of global equilibrium (force balance) is sufficient to

determine the tensile or compressive loading of each element. In a

continuum, whether it be structural or otherwise, the number of con-

nections becomes infinite. For such problems the continuum must be

divided into a finite number of conveniently shaped elements and trans-

formed into a discretized finite assemblage of nodal parameters.

In the earlier stages of finite element development static force

balance formed the theoretical foundation of the method. Later, energy

principles, which form a significant part of structural analysis, were

used. The finite element method provided a way to approximate the

global strain energy of a continuous structural system in terms of the

ensemble of energies in local, discretized subsystems or elements. Nodal

displacements are determined from admissible assumed displacement dis-

tributions by minimizing the strain energy functional.

In the mid-1960s the FEN was examined for possible application to

non-structural problems, such as fluid flow. Successful application

led to further development of the theory. It has since been generalized

8
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to solve linear and nonlinear partial differential equations for

boundary and initial value problems in many fields of engineering and

mathematical science. Recently, several mathematicians have contri-

buted to the Finite Element development and have established it as an

important branch of approximation theory. Close relationships exist

between finite element analysis and the classical variational concept

of the Rayleigh-Ritz method in problems where variational principles

apply. Unfortunately, variational principles cannot be found in all

engineering problems, particularly when governing differential equations

are not self-adjoint. However, for such problems the weighted residual

methods, such as least squares, collocation, or the well-known Galerkin

method apply. The Galerkin method is perhaps the most convenient

weighted-residual method for FEM analysis.

9



II Problem Descriptions

Two steady, potential flow problems are considered in this study.

The first is flow about a circular cylinder and the second is flow over

a thin symmetric airfoil at zero angle of attack.

Circular Cylinder/Incompressible Flow

First consider the problem of steady, incompressible, inviscid,

irrotational flow about a unit circular cylinder (i.e. radius = 1)

placed in a uniform steady airstream of infinite extent. Let the free-

stream be directed in the positive X-direction with coordinate systems

attached to the center of the cylinder as shown in Fig 1. Let nL

denote the infinite flowfield domain composed of points (f, 6) . The

boundary of 4a (denoted 411 ) is composed of all points (, t) on the

cylinder surface (denoted QZ ) and the boundary at infinity (denoted

i.e. points ( ia) as r --+ 0). For flow with circulation

a branch cut is placed in nL as shown in Fig 1. The purpose of the

cut is discussed in a subsequent section.

Governing Equation. The governing differential equation for in-

compressible potential flow is the Laplace equation given by

V re)~ ---- for (,e)in f(

where 1 is the velocity potential function. Since the equation is

linear, the potential function can be expressed as r =,, ( X + 4)
The term VX is the potential of the free-stream with velocity Va.

and O, the perturbation velocity potential. Substituting this

expression into eq 1 gives

10
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-o for (r,9) infn (2)

which is the governing equation for

Boundary Conditions. For the problem to be well posed, boundary

conditions must be specified on the surface of the cylinder and at

infinity. At infinity the disturbance velocities must vanish

C-) as r(3)

The tangential condition applied along the surface of the cylinder is

0 for (r)) in 41L, (4)

where A1 is a unit vector pointing outward from the surface. This

condition reduces to

" r+ Co5S e) for (r, f9) in c) (5)

For flow with circulation the stagnation condition must be

enforced at the down-stream stagnation point, which corresponds to

enforcing the Kutta condition at the trailing edge of an airfoil.

This condition is given by

_ 05 at - ) (6)

Since z =  from the tangential condition, then the stagnation or

Kutta condition is satisfied by

(A,9- rs,'ne) k
(7)

12



II

In order to keep , single valued, a branch cut is placed in the flow-

field as previously mentioned. It can be shown that the jump in

potential across the cut ( "- - is equal to the circulation

defined by

V is the tangential velocity and ds is tangent to the cylinder. Thus,

across the cut the condition

must be enforced. The actual value of ' is unknown, but can be deter-

mined by enforcing the stagnation condition. The numerical procedure

for doing this is described in the next chapter.

When the entire domain f1 is not discretized, then an additional

boundary condition is needed when symmetric flow (no circulation) is

considered. The problem of flow without circulation can be sol.,i:! a..i

the upper-half space defined by yz o (denoted Xy/.). This is possible

due to symmetry. Actually, any quadrant of S1 would be sufficient to

solve for 0 in all of 1L. In the half-space the additional boundary

condition imposed along the axis V o for all points r _> I (denoted

' o ) is

0 = along (10)

This condition is enforced from symmetry considerations and is not a

physical boundary condition.

13
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Thin Airfoil

Consider the problem of steady, inviscid, irrotational, isentropic

flow about a thin airfoil placed in a steady, uniform airstream of in-

finite extent. Let the free stream be directed in the positive X -

direction with the airfoil chord aligned with the X-axis. Let fl

denote the infinite flowfield domain composed of points ((, -')

The boundary of XL (denoted aX- ) is composed of all points (O, y

on the airfoil surface (denoted ).CkA) and the boundary at infinity

(denoted i.e. points ( ( ) as r- ), as depicted in

Fig 2. For cases involving lift a cut is placed in the flowfield

leading from the trailing edge to the boundary at infinity. The

reasons for the cut are essentially the same for the airfoil as for

the cylinder with circulation, which has been previously described.

Governing Differential Equation. For a thin airfoil, small-

perturbation theory can be used to describe the disturbances in the

free-stream velocity caused by the presence of the airfoil. The

governing differential equation for such a problem is the well-known

small-disturbance equation for the non-dimensional velocity potential

function , ) (Ref 19:4). The equation is

mo M (11)

for all points (A,j) in £Q. /Ac is the free stream Mach number and

'6 the ratio of specific heats (' =1.4 for air). The dimensionless

variables ( , j) are related to the physical ones ( , )

by the relations: X /C /C.

14
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where C is the airfoil chord length and J , the free stream velocity.

When considering strictly transonic flow over an airfoil with a given

thickness ratio, slightly different transformations relating y and

are used (Ref 10). In the strict sense, eq 11 is valid only for isen-

tropic flow, but it is a good approximation for flows with weak shocks

(Ref 19:2).

For incompressible flow (M O 0), eq 11 reduces to the Laplace

equation which is valid for bodies of arbitrary shape (e.g. the circular

cylinder). For low subsonic flow (i.e. O Me O ) the nonlinear

term C OXy is often assumed small compared to the other terms and

dropped, as done in linear theory. However, for flows in the transonic

range, the nonlinear term becomes important and must be kept to model

the mixed subsonic-supersonic flow regime accurately. In this study

the nonlinear term is retained even for low subsonic flow.

Equation 11 is a nonlinear, second-order, partial differential

equation of mixed type. The mixed character is caused by a change in

sign of the 0, (,<coefficient. For subsonic, free-stream Mach numbers

the sign change is caused by the behavior of the nonlinear term. For

subcritical values of M 0 the variable coefficient of 0, XX is positive
and eq 11 is elliptic everywhere in rZ . When M. is increased

slightly beyond some critical value, the coefficient becomes negative

in a region in the vicinity of the maximum thickness point of the

airfoil. Equation 11 is hyperbolic in this region while it remains

elliptic in the remainder of n . Along the line which separates these

mixed flow regions, the coefficient is zero and the equation is para-

bolic. Unfortunately, the position of the parabolic or sonic line is

not known a priori. In addition, the existence of the nonlinear

16



term permits solutions which have discontinuous first derivatives.

These discontinuities are associated with the presence of weak com-

pression shocks which separate the downstream side of the hyperbolic

and elliptic regions. These shocks permit the supersonic flow in the

hyperbolic region to return to subsonic flow in the elliptic region

over very small distances.

Boundary Conditions. For the problem to be well posed, a boundary

condition must be specified on the surface of the airfoil and at

4" infinity. At infinity the disturbance velocity must vanish, i.e.

0 as (12)

The impervious or tangential condition for flow along the airfoil sur-

face is given by

+_ C1((,j (13)

where F (X) 0 describes the surface of the airfoil.

To be consistent with linear small-perturbation theory, the term

in the tangential boundary condition is normally neglected compared to

unity. This boundary condition is not enforced on the surface

+
0- . Instead, it is applied along the axis 0 O- , in

accordance with classical thin-airfoil theory (Ref 58).

For nonlifting thin airfoils the solution can be obtained in the

upper half-space. From symmetry considerations the condition

0 (14)

must be applied for all points along the axis --0 which lie beyond

the leading and trailing edges of the airfoil. For Tore discussion

17
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about this condition refer to the description of the circular

cylinder.

Circular Cylinder/Compressible Flow

The description of the compressible flow problen for the cylinder

was purposely placed after that of the airfoil. The problem of sym-

metric, steady, potential flow over a circular cylinder can be formu-

lated in half-space (denoted X2o/), as described for the incompressible

problem. The governing equation when compressibility is considered is

no longer the Laplace equation, but is highly nonlinear and of mixed

type (Ref 24). The exact potential equation is

Cc)0 (15)

where

This equation is a nonlinear, second-order, mixed elliptic-parabolic-

hyperbolic, partial differential equation. It reduces to the Laplace

equation for incompressible flow and to the small-disturbance velocity

potential equation (i.e. eq 11) for flow over slender bodies. Instead

of using the exact governing equation for the compressible problem, the

small-disturbance potential equation for transonic flow was selected as

the governing differential equation. From a physical viewpoint eq 11

does not accurately model the flow over the cylinder since the velocity

18
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perturbations become large. From a mathenatical perspective it can

be solved for the cylinder when appropriate boundary conditions are

specified. The physical validity of the solution can be evaluated by

comparison with solutions of the exact potential equation. Thus, the

assumed governing differential equation for compressible flow over the

cylinder is given by eq 11

M+ (I + 0 (1

The cylinder radius is used in place of the chord length to nondimensional-

ize eq 11 for the cylinder problem.

The boundary conditions for the symmetric compressible problem are

described in a previous section. They are given by eqs 3, 5, and 10:

-O, as r co (3)

r for (,r e) in &.Rc (5)

0 for Cf6 9) in .fAle. (10)

19
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III Analysis of the Cylinder Problem

Flowfield Discretization

A finite element solution of the governing differential equation

for the cylinder problem requires that the flowfield be discretized by

a finite number of elements. Two techniques are possible; for each

technique domain S1. is replaced by a finite domain F . First of all,

one could take Q F to be very large, and require that the actual

gradient boundary conditions, expressed by eq 3, be enforced along the

farfield boundary. Since these boundary conditions and also those

specified on the airfoil surface are of the Neumann type, then the

solution of the governing differential equation can only be determined

to within an arbitrary constant. If this technique was used, then one

must specify the value of 0 at some point, preferably at a nodal

point along the farfield boundary, so the solution can be uniquely

determined everywhere.

The second possible technique is to impose along the farfield

boundary (a F) the condition Oc Oc" The expression for

should be an asymptotic solution which satisfies the infinity con-

dition and is valid in the farfield of CL3 (Ref 18). This approach

is commonly adopted by investigators using finite difference methods

(Refs 1, 10, 40). It is also employed by others using finite element

methods (Refs 9, 12, 13) and will be used in the present analysis.

Generally speaking, a relatively smaller domain Ac, is required for

the second technique than for the first. This means for a desired

degree-of-accuracy fewer degrees-of-freedom are needed to solve the

problem, which translates into lower computational costs.

20
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A number of different elements can be used to discretize domain

.f. F " When triangles (Ref 3) or quadrilaterals (Ref 13) are used, the

shape of domain rL F is altered since the discretization does not

exactly describe the boundary shape. This approximation may not introduce

significant error in the solution unless large elements are used near

the boundaries. The isoparametric quadrilaterals described by Raju

(Ref 27) or those developed in this study will exactly discretize domain

nLF . For this reason, the element shown in Fig 3 will be used for

the cylinder problems considered. Figures 4 and 5 show the discretiza-

tion of ac for problems of symmetric flow and flow with circulation,

respectively.

Incompressible Flow

Before describing the finite element analyses of this problem, a

further simplification will be discussed.

Superposition. When incompressible flow with circulation is con-

sidered, the velocity potential function may be represented by two

simpler component functions. Since the governing differential equation

and boundary conditions are linear, then the perturbation potential

function can be expressed as

0- t o (16)

This superposition of solutions will produce two problems, each of

which can be solved without concern about what the value of circulation

should be or how it should be handled numerically. The function

is the solution for the thickness or symmetric problem, and the

solution of the lifting problem with unit circulation. The actual

21
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value of circulation (P) is determined from the stagnation condition,

eq 7, after each of the two component solutions are known.

Substituting eq 16 into the governing differential equation and

boundary conditions one obtains two problems. First, the symmetric

or thickness problem is defined by

DE: 'v2 # 9) = 0 for 7 9) in fl F  (17)

BC's: C S o for (rOe) in -. (18)

ee - 0 for (r, ) in 4 (19)

for (Y', ) in -nFF (20)

Secondly, the lifting problem is defined by

DE: VZ ( r -- 0 for (r6 ) in - F  (21)

BC's: , for(r) in (22)

for (r, ) in (23)

... " __ 1 for (r B, e= e o - ) (24)

The functions $ and are farfield expressions for the thickness

and lifting problems, respectively. They represent velocity potentials

for a source and vortex of unit strength. After e and 0. are

known, (' is determined from eq 7. Substituting eq 16 into eq 7 and

25
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solving for r gives

-- " - 1(25)

Finite Element Solution. Suppose S.ZF is discretized by a total of

elements with a total of r system nodes. The approximate solution

of the Laplace equation, which governs each of the two problems described,

is obtained from the method of weighted residuals as expressed by

dff ~ t&) Yl(v& cA 0 (26)

for ', N Functions (r O) are weight functions that will

be specified later by the Galerkin method. Integration by parts or

using Green's Theorem gives

- S4) JS 0 (27)

The functions and y are chosen from a class of functions so that

eq 27 is integrable. When "CZ- is discretized by finite elements,

then 0 and nmust be continuous across inter-element boundaries and

have measurable first derivatives throughout X1 F. This means that

and We cannot be piecewise constants, but they can be piecewise

linear or bilinear functions, providing continuity is enforced across

inter-element boundaries.

The Galerkin method of weighted residuals is used to obtain the

finite element solution. Piecewise trial functions are chosen to

26
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approximate 0 4hich satisfy both the continuity requirements and the

essential boundary conditions (i.e. boundary conditions for which 0 is

specified). Within each sector element, denoted e , the trial

function can be expressed as

4c;e N O,9 (28)

for Jd,.., 4 The repeated index j indicates sumrnation over the

range of the index. N(r,e) are basis or shape functions and ,are
rang

the unknown nodal values of the potential function. For Galerkin's

method the weight functions y are set equal to the shape functions

N (Yoa e) "Since the basis functions are chosen to be continuous

across inter-element boundaries, then eq 27 can be written for each

element as

V ; - f N CIS o (29)

e ee

for :1i,"',q. The star * notation on the boundary term

signifies that the term can be non-zero only for elements e that

border the bcndary of -LF . For all other elements the boundary

integral is zero. Substituting eq 28 into eq 29, and also putting

the actual gradient boundary conditions into the boundary term, pro-

duces elemental equations of the form

Loe e-- (3'0)

e
The matrix )<;i is referred to as the elemental stiffness matrix and

27
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is given by

elKi N,, NJ-,C &rN. (31)

The form of vector f depends on the gradient boundary conditions for

the problem being considered and will be specified in later sections.

The essential boundary conditions, which are imp0sed on the trial

functions, are enforced after the assembly of elemental equations.

Thus, 4), in the boundary term of eq 27 is selected to be zero along

segments of )ILF where O is specified (i.e. the farfield boundary.,

- XLF, ). The usual assembly procedure is used to transform all of

the elemental equations into a global system of equations which can

be expressed as

S(N (32)

Global expressions T ) r are the counterparts of elemental

expressions Ke 41, .fe respectively. Equation 32 is reduced to

the final set of system equations by enforcing the essential boundary

conditions along )nFF First, eq 32 is partitioned as follows

Ka _(33)

Vector is composed of the L nodal values of which lie

along aSFF and is computed from the farfield expression (: =IF

Vector 4} is composed of the remaining IW- N- L unknown nodal

values of #, which is determined from eq 33 by inverting matrix

28



Ko] to give

The assembly and reduction procedure just described will be followed

throughout this report.

Trial Functions. Three trial functions were chosen to approximate

the solution of 0 within the sector element shown in Fig 3, They

are:
0 ; (1) C e) IO + b, si ,Cs + C, 1 (35)

=r

(2) (t --) 2 + b2.r + ' + d.rig (36)

(3) O(v-, e) a C3 + b3 r + 03~ 6 1- + r e(37)

Constants (K can be expressed as functions of the unknown

nodal value of 9e and the geometric parameters of the element

When the constants are evaluated, each of the trial functions can be

written in the form expressed by eq 28

a4J.r)d' /(~ j 4-) (28)

The expressions for N(r, 1) are given in Appendices A-C for each

of the above trial functions. Throughout the remainder of this report

the superscript e will be omitted when it is clearly understood that

elemental quantities are being considered.

Symmetric Flow. First, consider the problem of symmetric flow.

This problem can be formulated by either considering all of domain

29



Z ' F  or half of it. Typical discretizations are shown in Figs 4

and 5. Using Galerkin's method eq 27, as expressed by eq 29. can be

written for element & as

if

S( VN -V >) JA~ Y=" ~>~YN; JS (38)
e DI2

for (I i,," r). The star * notation on the boundary term sig-

nifies that the term is present only for elements which intersect

and )lo . When eq 18, the boundary condition, is substituted

into eq 38, the results can be written as

e
where stiffness matrix KIj is given by eq 31. The only non-zero

values for ,' comes from elements which contact the cylinder surface

and is defined by

Jc ~(39)

: I

The symmetric problem was solved using the three sector elements

e e
described in Apendices A-C. The derivations of kii and are also

presented in these appendices. Mhe assembly, reduction, and solution

procedure described in the previous section was followed. The

expression for the farfield potential, needed to reduce the assembled

equations, is given by
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4FF C~Srfor (r e) in a)X~cjc (40)

where r= RFF is the radius of c) FI-

Flow With Circulation. When circulation or lift is present the

entire domain 4LF must be discretized as shown in Fig 5. Along the

branch cut, nodes are placed at pair-points located on opposite sides

of the cut. The difference in potential between pair-point nodes must

be equal to the value of circulation.

A c~nvenient way to consider flow with circulation is to use the

superposition technique previously described. The thickness or sym-

metric problem has already been discussed. The lifting problem,

described by eqs 20-24, is formulated numerically in a similar manner.
e

The elenental stiffness matrix 1 is the same as for the thickness

problem, since the governing differential equation for both problems

is the Laplace equation.

There are four minor fou ulation differences between the tw

problems. First, the vector 4X equals zero for every element e

for the lifting problem. This is due to the boundary condition speci-

fied along t , eq 22. Secondly, the farfield expression is given

by

4~F$ -j for L )in cl X $:F (41)

Thirdly, the required jump in potential across the branch cut rmust be

enforced. This is done bv setting the nodal values of 01 ad

- for nodes along the cut This choice i' consistent with
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the farfield expression as O-* RFF and satisfies the requirement

specified by eq 24. This choice also forces oil r o for points

along the cut. Since this condition is true everywhere for purely

circulatory flow, then no generality is lost by its use. It should

be pointed out, that this choice would not be possible if the super-

position principle were not used to divide the total problem into tw

simple problems. When the total problem is formulated without super-

position, then nodal values of potential along both the upper or lower

sides of the cut must be left unspecified. This will insure that the

is not forced to be zero, which it is not for the thickness

problem. The fourth difference occurs in the reduction procedure.

Since the nodal values are specified along the cut, then they have to be

included with the nodes along the farfield boundary when the assembled

equations are reduced. Once solutions for 0 and x are determined,

then the circulation defined by eq 25 can be calculated.

The problem of flow with circulation was solved using sector

elements (2) and (3). Appendices B and C present derivations of the

elemental equations.

Compressible Symmetric Flow

The problem of compressible flow without circulation is formu-

lated in the half-space shown in Fig 4. The governing differential

equation for this problem is given by eq 11, and the boundary con-

ditions by eqs 3, 5, and 10.

Discretization. The solution of this problem by the finite

element method is obtained in the finite half-space C?.F, as described

for the iacompressible problem. Domain R.F is discretized as shown
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in Fig 4 by a total of E elements with N global nodes. Since the

governing equation for this problem is the same as the equation for

the airfoil problem, then the asymptotic solution used as a boundary

condition along the farfield boundary (a.ClFF ) is given by eq 50

described in Chapter IV.

Finite Element Solution. From the method of weighted residuals,

eq 11 can be expressed as

0 (42)

for c' ) |. '. For appropriately chosen weight functions this ex-

pression can be integrated by parts to give

I % (43)

The finite element approximation for in each element is given by

eq 28 as

~(r-Ie) (28)

for j i,., ,. For Galerkin's method the weight functions W; are

set equal to the shape functions fJi. When shape functions are

chosen to insure integrability of eq 43, then it can be written for

every element and assembled as previously described. The elemental form

of eq 43 can be written in iterative form and expressed symbolically as
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+ I~~j ~ f 'I-(44)

for , I,."',4 The elemental matrix K~1 and vector F: are the

same as those defined for the incompressible synmetric problem The

new expressions Lq( 4) and 3j(*) come from the nonlinear term

and are functions of the solution itself. The superscript Y\ is

associated with the iterative solution procedure which is briefly

described below and discussed in more detail in Chapter IV. The super-

script vi should not be confused with the vector vi which is the unit

outward normal along the cylinder surface.

The iterative form of the elemental equations comes from the way

the governing equation is solved. The nonlinear term, in eq 43,

is written iteratively as " Essentially, the potential

function 1 is replaced by a sequence of functions 4'
i, ] which generate a sequence of equations expressed by eq 44.

These equations are solved for each iteration until the sequence of

potential functions converges. Convergence is assumed when

-(45)

for some small

An additional approximation is made to simplify the integrations

required by eq 43. In the nonlinear term the derivative is as-

sumed to be a constant in each element. The constant chosen is the

average value of K computed from
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e (46)

This approximation is made only for the cylinder problem. The non-

linear term is not locally linearized in this sense for the airfoil

problem, but is treated in a more exact manner. For this approximation
D

matrix L 41(q9) can be expressed in two parts as LI L

These expressions are given by

L C"' - -M® (LI + JJE e N,,

Sin& CoSS N- +- NI-
r jjjj

+ a N,',, Wej r j (47)

and

+IS rrJ d

Vector 5ZC't) is given by (48)

M + ' ( +r (49)

The synimetric compressible problk was solved using sector element

(3). Appendix C contains a description of the element and the deriva-

tives of the elemental equations.

35



i IV Analysis of Flow Over a Thin Airfoil

The governing equation and boundary conditions for flow over a

thin airfoil are described in Chapter II. This chapter describes the

numerical analysis of the problem by the Finite Element Method. Many

of the formulation techniques and procedures that are used, have been

described in Chapter III for the cylinder problem. Similar discussions

are not repeated for the airfoil; instead, the reader should refer to

the appropriate sections of that chapter for more detail.

Flowfield Discretization

The infinite flow domain f, is replaced by a finite but suffi-

ciently large domain X'LF with the potential specified along the far-

field boundary DS"FF" A detailed discussion of the reasons for this

approximation is given in Chapter III. The condition imposed along

-aSF is the farfield expression of Klunker (Ref 18) given by

OFF - , 7
c.horgl

L.rr 3

V (50)

where iao- Z\
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The first term in eq 50 is directly associated with the thickness

distribution ( is the thickness ratio) of the airfoil, and is the

dominant term for nonlifting flow (Ref 18). For lifting flow, the

second term is the most dominant of the three and was the only term

included in Chan's formulation (Ref 13). The expression sgn(y' is

required to account for the jump of potential in the farfield down-

stream of the trailing edge. For lifting flow, a branch cut must be

included in SL F extending from the trailing edge to the farfield

boundary. Across this cut the jump of potential is forced to equal

the value of r appearing in eq 50. The last term is of highest order

and involves an area integration over the entire domain .A2F . When

this term is included in the farfield expression, an iterative solution

algorithm must be used since the term depends upon the solution itself.

The effect of neglecting the last term is evaluated in Chapter VI.

Consider the problem of flow over a symmetric airfoil at zero angle

of attack. From symmetry considerations the problem can be formulated

in the half-space. Figure 6 shows an initial division of C?F into

three segments or super-elements. Since the tangential boundary con-

dition for a thin airfoil is enforced along the Y=-o axis, then the

first row of elements used to discretize the center segment must

extend to the chord line (%- axis). Any type of element with straight

line boundaries (i.e. triangles, rectangles, etc.) could be used to

discretize the super-elements. After selecting the type of element

to be used, one could write a computer subroutine to automatically

discretize each super-element from a few input parameters which describe

how the segment is to be divided into smaller parts. This procedure was

followed for both the cylinder and the airfoil problem; however, the

37



C4 (\J9

(4-

U.U

I- u
Q) -4o-4

4J

1.0

Q)~c
N b



details are not important and will not be discussed.

A slight mdification in the described discretization of the

center super-element would be required if the tangential boundary con-

dition was applied along the actual airfoil contour. For this case,

elements in the center segment would not extend to (= O . Elements

would have to be selected to either match or approximately match the

shape of the thickness profile. This difference in discretizations

becomes significant when thick airfoils are to be analyzed, and is

discussed further after the elemental equations are formulated.

Iterative Approximation

If the solution of eq 11, the governing differential equation, is

directly formulated by finite element methods, then a set of second-

order, nonlinear, algebraic equations will result. These equations

would have to be solved by some iterative technique such as Newton-

Raphson. This type of solution process can be avoided by directly

expressing and solving the governing equation in iterative form. First,

eq 11 is written as

moo) 01% MCC + C) (51)

As described previously for the cylinder, the nonlinear term x is ap-

proximated iteratively by I X where yj denotes the iteration

ninber. In essence potential is replaced by a sequence of

potentials . , , which converges when

S(45)
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for small e Thus, eq 51 written in iterative form becomes

-- (52)

Finite Element Solution

Suppose the half-space -f-F is discretized by a total of E

elements with N nodes. The approximate solution of eq 52 is ob-

tained from the method of weighted residuals as expressed by

XL F 
(53)

where t = I I N For suitable weight functions kpg . tht equation

can be integrated by parts to give

F(54)

where I X Y, is the unit normal vector along each segment of

- The boundary conditions:

y~+f+ for (,)) in tcS-LA (55)
~y I+41 )c
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and

0 - for (X1'Y) in (56)

are substituted into the boundary term of eq 54. Since is specified

along then SV' is taken to be zero there.

Equation 54 is piecewise integrable over the discretized half-

space providing $ and S' are at least continuous functions across the

inter-element boundaries. Within each element the solution can be

approximated by

where Nj are the shape functions and the unknown potential values

at the nodes. The shape functions are chosen to satisfy the required

continuity of in the global sense. For Galerkin's method '.* is set
equal to Nj. Thus, all continuity requirements are satisfied to

allow eq 54 to be written in elemental form and assembled to obtain

the global form. The elemental form of eq 54 is expressed as

k'<: (qJ q ' - (58)

Matrix is given by the sum of the following five matrices:

Aij -- (I- '- f N,,,, N), dJ y (58a)

8 ]= [Nj,, Nj,, d dy (58b)

-- e
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N4 A x(58d)

.. _ . ,IX '., 1 (58e)

'-iA yZo+

Vector is defined by

a a~t. Y= o

In general and 4 " depend upon the shape of the airfoil.

The contribution to K. from the airfoil shape comes only from
matrices D and E.011) These matrices are evaluated only

for the first row of elements above the airfoil in the center segment

shown in Fig 6. They are zero for all other elements since they come

from the global boundary term of eq 54. This boundary term could

alternatively be taken to the right-hand side of the equation and

treated as a force. The effect of this alteration would be a slightly

slower convergence rate caused by replacing n + 1 with q in the

affected terms.

The contribution to from matrices Ai , ' and
t) 'j'

are independent of the airfoil being considered, since they

depend on an integration over the elemental area. This is true only

because the tangential boundary condition is imposed along - ,
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which requires that elements be extended to the X -axis. If the

boundary condition was enforced on the airfoil surface, then the area

of elements in the first row of the center segment would be smaller

by comparison. Thus, an indirect dependence of the airfoil shape from

these elements would be reflected by all the matrices defining

The effect of enforcing the boundary condition along

0+ instead of on the airfoil contour, is not critical for thin

airfoils as long as element sizes in the J-direction are larger than

the thickness of the airfoil. Since one of the advantages of the FEM

is the ability to use relatively large elements to achieve accurate

approximations, then element size difficulties should not be critical

until thickness ratios become large. For thick airfoils or for arbi-

trarily shaped bodies the boundary conditions must be satisfied, not

on -= 0 + , but on the surface contour. For these shapes, elenents

would terminate at the contour and pose no conflict. By way of com-

parison, some investigators (Refs 10, 40) using finite difference

methods and small grid sizes satisfy the tangential condition along

Several different types of elements and orders of approximation

could be used to solve this problem. For example, the higher-order

cubic triangular elements used by Chan (Ref 13) would be more than

sufficient. Also, linear triangular elements (Ref 7), which provide

the lowesL permissible approximation, would be adequate since they

satisfy the required continuity. In terms of velocities, the linear

triangles would give constant velocity elements. In order to get a

linear variation in velocity, which is not required, one would have to

use quadratic triangular elements. Somewhere between the linear and
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quadratic triangular elements are the bilinear rectangles or, in

general, the quadrilaterals. Rectangles are normally not very useful

except for simple boundary geometries.

For the problem being considered, the boundaries are straight line

segments as shown in Fig 6. The boundary segment between the leading

and trailing edges of the airfoil is straight only because the tangen-

tial boundary condition is satisfied along the chord (i.e. 0 0+).

Therefore, rectangles can be used effectively to discretize -QF

everywhere. Rectangles are desirable due to their simplicity, and were

chosen for this reason. They are described in Appendix D along with

the derivation of elemental equations.

Mixed Flow

Reported Convergence Difficulties. Several investigators, who

*, have tried to solve the velocity potential equation using finite element

methods, report difficulties with convergence of solution algorithms

for transonic flow. Among these are: Chen and Habashi (Ref 12), Chan

(Refs 13-16), Ecer (Ref 22), Akay (Ref 24), and Aziz (Ref 23). Diver-

gence of solution algorithins have lead some to believe that Galerkin's

method could not be used. Others claim the source of difficulty is

the small-disturbance, velocity potential formulation of the problem

and suggest that alternative formulations be tried. However, Akay

(Ref 24) reports convergence difficulties with finite element solutions

of the total velocity potential equation. It should be noted that con-

vergence problems also occur when finite difference methods are used

(Refs 33, 34, 40). To insure that solution algorithms converge,

special difference operators have been developed. A different operator
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may be used at each grid point depending on whether the point is con-

sidered to be an elliptic, parabolic, hyperbolic, or shock point

Divergence of solution techniques for more classical methods, such

as the Rayleigh-Janzen Method (Refs 29, 30), also occurs when transonic

flow develops.

The convergence problems reported by other investigators for

transonic flow are also observed when the methods described in this

study are used to solve the transonic problem. Solution techniques

converge quickly as long as the flow remains subsonic everywhere in

SF "When transonic flow occurs (i. e. a small supersonic bubble

appears in the flow), solution techniques which are suitable for sub-

sonic flow (i.e. an elliptic problem) do not converge at all. These

conclusions are supported by solution results presented and discussed

in Chapter VI. Convergence difficulties are caused by the mixed

character of the flow which results when the governing differential

equation changes type from elliptic to hyperbolic in the supersonic

region. To overcome convergence difficulties an adjustment is needed

in the finite element equations for elements in the supersonic region.

The purpose for this adjustment is to account for the proper zones of

influence in the supersonic region where the equation is hyperbolic.

Finite element formulations of elliptic equations work quite well, but

those same formulations applied to hyperbolic equations will not work.

Formulation Adjustments. Other investigators have tried various

techniques to alter their finite element formulations for mixed or

transonic flow. These techniques are briefly described, and all were

tried in the present study. The first technique was developed by

Chan, Brashears. and Young (Ref 23). They altered their finite element
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equations for elements in the supersonic zone during the assembly

procedure. Before the local stiffness matrix was assembled the

- coefficient, Ma p-, -l (ID *-) X , was calculated

at each node. If ( was negative at all nodes in the element. then

the rows in the stiffness matrix corresponding to the downwind in-

fluence were ignored in the assembly process. By zeroing out the

appropriate rows in the elemental stiffness matrix the downwind in-

fluence on the solution at upwind nodes was blocked. Chan's technique

appeared to wrk in conjunction with the least squares fornlation

that he used.

The second technique was developed by Akay, Ecer, and Utku (Ref

24). For the iterative solution procedure they chose, the stiffness

matrix was a function of the nerturbation velocity squared. During

the iterative process, if any olener e was inside the supersonic

zone, then the velocity term denoted by ?. was replaced by

~e 4 P t  + ~'(59)

Velocity I is the velocity in the element on the upstream side of

element e . The constant & is the upwinding coefficient which was

taken to be between 0.2 and 0.3. According to Akay, this technique

prevented the iterative solution algorithm from diverging; however, it

did not produce convergence in the sense of eq 45. Instead, the

solution for the potential function oscillated about some solution.

In addition to Akay's own technique, he also tried Chan's upwinding

method, which caused the solution algorith- tn diverge immediately

upon application.
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Four additional upwinding techniques were tried, three of which

4are briefly described below. The first is an element sliding tech-

nique which is implemented during the assembly process. As the

elements are assembled, a check is made to see if the velocity at all

element nodes is supersonic. If the element is inside the supersonic

region, then it is slid upstrean before assembly. Thus, the influence

on the unknown nodal values associated with that element comes from the

region upwind of the nodes.

The second technique is a nodal sliding method which is imple-

mented after partial assembly of the elements in the supersonic bubble.

This method closely resembles the upwinding or backward-difference

methods used in finite difference analyses. Before assembling any

elements, a check is made to identify which nodes are contained within

the supersonic bubble. If a node is in the bubble then all elements

which have that node in common are identified. Next, a portion of the

stiffness matrix, which comes from the X -derivative terms, is assem-

bled for the identified elements. After this portion of the assembly

process is completed, then the coefficients in the partially assembled

global equations are slid upwind one position. This procedure is anal-

ogous to taking the first-order, five-point, central-difference

star and sliding the horizontal coefficients upwind one step to get

the backward-difference operator as illustrated below

0 * * . . o
00

central-difference backward-difference
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The third upwinding technique was only briefly examined. It

was taken from a suggestion by Christie (Ref 37), and could prove to

be effective if developed properly. For this technique, the weight

functions are chosen to be different than the shape functions for all

elements inside the supersonic bubble. The idea is to give more weight

(i. e. more influence) to the upwind half of the element than to the

downwind half. For the technique tried, upwinding was done only in the

?-direction. Weight functions were taken to be N; . N + (-P(X)

for c equal to an upwind node, and a N -o4p(X) for

C equal to a downwind node. The function P(K)is chosen to be zero

at the nodes. This technique was tried for X (K- 2 0)

and ( I , but it was not explored thoroughly and warrants further

study.

New pikding Technique. A new upwinding technique was developed

in this study. It is more intuitive than analytical in nature, although

it has an analytical foundation. It is not as elegant an idea as the

previous one, but it is simple to use, and provides accurate approxi-

mations of pressure distributions for transonic flows. For this and

other reasons it may be preferred to the previous method. It is well

known that picking weight functions which are different from the shape

functions may lead to significant error (Ref 37).

The new method was developed by modifying the finite element formu-

lation of the nonlinear term, which is the term that is responsible for

the mi: - c'lqracter of the flow for subsonic, free-stream Mach numbers.

Recall that the nonlinear term in eq 51 was written iteratively

as~~f 01 n+1as N O " For iteration (n+ ) this term is relaxed by

replacing it with the expression
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A r

F? (60)

The relaxation coefficient R takes the range of values: 0 ! R I

The last term in eq 60 can be taken to the right-hand side of the

governing equation and treated as a force conputed from the previous

iteration. Thus, eq 51 written in iterative form becomes

1+1a

L(IM V)~K -M . R4l1~ Jrl,] )-

[Mo - (1 (61)

When R J , the nonlinear term is not relaxed at all. For R- = ,

the nonlinear term is totally relaxed (i.e. it is taken to the right-

hand side of the equation and treated as a force that depends upon the

previous iteration of the solution). For values of R between 0. 0 and

1, 0 a mixture of these two extremes exists. The sole modification

of relaxing the nonlinear term is not sufficient to make the solution

algorithm converge in the sense of eq 45. It would be difficult to

imagine that a hyperbolic equation could be solved by merely solving a

sequence of elliptic (Poisson) equations. The ideas of domain of

dependence and range of influence from the theory of differential

equations must be included into the modification process. As dis-

cussed previously the sign of the OXX coefficient will determine

whether the governing equation is elliptic or hyperbolic. Inside the

supersonic bubble that appears for transonic flow the coefficient is

negative and the equation is hyperbolic. Outside of this bubble the
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coefficient is positive and the equation is elliptic. For elliptic

differential equations the domain of dependence is the entire domain

of the problem, but for hyperbolic equations the domain of dependence

at some given point is confined to the region within the backward

cone defined by the characteristic curves. Consequently, the solution

at the given point is influenced only by the solution at points in

the backward cone and not by the solution at any other points in the

domain. Likewise, the solution at the given point will influence the

solution only for points in the forward cone, also defined by the

characteristic curves.

Without getting involved with the method of characteristics, the

above described concepts can be incorporated into the modification

procedure being discussed. For elements inside the supersonic bubble

the nonlinear term is relaxed as described. This means that forces

which depend upon the solution are applied at each of the element

nodes. However, the solutions at upwind nodes cannot be influenced

by the solution at downwind nodes; therefore, the forces acting at

downwind nodes are set equal to zero. In addition, the Folution in

the element cannot depend on forces applied at upwind nodes, when

those forces are determined from an integration over the entire area of

the element. At any point in the element the solution should depend

on the potential only in a backward cone defined by the characteristic

curves. Thus, the upwind forces must be reduced in magnitude by some

factor. One way to represent this numerically is to multiply the

relaxed term (,- )( X) by the factor U where o.0 !- U 1.0

at upwind nodes. Thus, the iterative Galerkin form of the governing

equation for hyperbolic elements becomes
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where U is given by

-4

0 to Io at upwind nodes

0 at downwind nodes

In actual implementation eq 62 is integrated by parts as discussed

previously. The elemental equations expressed by eqs 58 a-f, and

referred to as equations for elliptic elements, are modified by the

upwinding procedure for hyperbolic elements as follows:

(Azj) -- (A;j) eLL (63a)

CS~j)p (B~~ett(63b)

C(0 )h R,¥ - ~ W ). eL (63.

(6 3d)

E 3(dr) hy, = R Etj ((bn)e LC (63e)

± (63f)
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The last two terms in eq 63f are forces resulting from the upwinding

procedure. They are given by

-;hy U(I-R) CiJ(0)ec 4 J (62F

N h(1U R) E*( (63h)

e v

Th lThe relaxation and upwinding parameters (R)U) were investigated

by numerical experiment for two reasons. First, an estimate was

needed on the range of values for which solution algorithms converge.

Secondly, the "best possible" combination of parameter values for a

given Mach number was needed to solve for realistic pressure distri-

bution on the airfoil. The effect these parameters have on conver-

gence properties and on airfoil pressure distributions is presented

in Chapter VI.

In general, the idea behind the upwinding method is to modify

the formulation just enough to capture the physics of the problem,

within the realm of the assumptions.

For a given airfoil shape and Mach number, the values of R and

are selected by an iterative method. First, upper bounds (i.e.

values above which solutions will diverge) and lower bounds (i.e.

values below which solutions will not diverge) are estimated. The

idea is then to determine the lowest upper bound for both R and

U which permits the solution algorithm to converge. The old,

familiar, and perhaps inefficient interval-halving method was used for

this procedure. Further discussion concerning this procedure is given

in Chapter VI.
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V Results -- Flow Over a Circular Cylinder

Finite element solutions are presented for flow over a unit

circular cylinder for Mach numbers within the range of 0 Moo ! M,.

These solutions are compared with exact solutions for incompressible

flow and with solutions obtained from other approximate methods for

compressible flow. The problem of incompressible flow without circu-

lation was solved using three different elements representing one

nonconforming and two conforming approximations. The two conforming

elements were used to solve the incompressible problem with circula-

tion. The compressible problem was solved using the new conforming

element.

Incompressible Flow Without Circulation

Geometry. The entire flowfield was discretized as shown in

Fig 5 for a typical set of discretization parameters. Only a quarter

of the field is necessary because of symnetry, but since the addition

of circulation requires the entire field, then it was discretized for

all of the incompressible problems. A computer subroutine was written

to automatically discretize the field from the parameters ( RFF, NRi,

Ws). RFF is the radius of the farfield boundary, NR the number of

element rings, and Ns the number of angular sectors in each ring

(see Fig 5).

The location of the outer boundary depends upon the boundary

condition imposed there. When the farfield expression given by eq 40

is used, RFF can be as close as 3 radii from the cylinder. If other

boundary conditions are used, for example OF then ?FF has

53



to be extended beyond 10 radii before the velocity profile on the

cy d14rn surface is unaffected. The boundary condiLion Opc = 0 does

not produce adequate velocity distributions when farfield boundaries

are located within 10 radii of the surface. This behavior was expected

and affects the velocity distribution significantly in the region of

maximum velocity. For this reason, and to preclude the necessity of

considering large flow domains, the farfield boundary condition given

by eq 40 is used exclusively.

Comparison of Three Sector Elements. Before examining the effect

of element refinement on convergence, a comparison among the three

finite element approximations and the exact solution is given. The

solutions for a coarse flowfield discretization of only 12 elements

(3 rings and 4 sectors) a-e shown in Fig 7 for the three trial functions

described in Chapter III. The nonconforming approximation appears to

be better than either of the other two conforming ones for the dis-

cretization used. The noncomforming approximation obtained from this

coarse discretization actually compares well with solutions obtained

from the other two conforming elements when a more refined discreti-

zation is used. One might conclude, on the basis of these results

and observations, that sector element (1) is the most desirable

element; however, this choice is a bad one. For the two conforming

elements, the approximations improve when the discretization is re-

fined, but they do not improve for the nonconforming element. In

fact, the error in the approximations becomes greater when the dis-

cretization is refined.

One reason for the decline in accuracy for the nonconforming

element is due to the error caused by not satisfying the required
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continuity of potential across inter-element boundaries. For coarse

discretizations, which mean relatively few such boundary lines, the

error is comparatively small. However, as the discretization is

refined additional error occurs and the solution degenerates. Further

refinement compounds the problem which leads to the rejection of sector

element (1), except for the most coarse discretizations. There are

formulation adjustments which can be made to improve the nonconforming

solutions significantly for finer discretizations. However, the
.o

resulting solutions are not as good as those obtained from the con-

forming elements and these adjustments will not be discussed.

Discretization Effects. Tangential, velocity distributions

1J9 ( -= i( 10) obtained from each conforming elenent are compared with

the exact solution as shown in Figs 8 and 9. The four finite element

solutions in each figure are for four different discretizations of

F . Additionally, tbpse discretizations represent refinement of

the element angular size parameter for a fixed value of the element

radial size parameter o( . These solutions are presented to show the

difference in convergence properties between the two conforming

elements as a function of discretization refinement. By comparing the

solutions in Figs 8 and 9 with the exact solution it appears that

refinement of~ alone is sufficient to achieve convergence with element

(3), the new el.ement. It also appears that refinement of q alone is

not sufficient to achieve convergence with element (2), the bilinear

elerent. For each discretization the velocity distribution obtained

with element (3) is closer to the exact distribution than the distri-

bution obtained from element (2). These differences are due to the

diverse nature of the trial function for each element.
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To further illustrate the difference in convergence properties

4between the two conforming elements, consider two variations in the

discretizations of -n F . First, the effect of refining only the

radial parameter o( is examined. The number of angular sectors and

location of the farfield boundary remain fixed. Table I shows the

effect on the solution of the tangential velocity at 1 ± - r/.

for refinement of o(. The points ± : T/a are selected because

the point-wise error there is a maximum as shown in Figs 8 and 9.

Table I - Point-wise Error for Conforming
Sector Elements with Radial Refinement*

Nunber Outer Radii of Ring Je(YrI2.) Per Cent Error
of

Rings 1 2 3 4 5 6 Element (3) Element (2)

3 2.0 4.0 7.8 0.95 4.46

4 1.4 2.0 4.0 7.8 0.95 2.49

5 1.4 2.0 2.8 4.0 7.8 0.95 1.99

6 1.4 2.0 2.8 4.0 5.6 7.8 0.95 1.87

4 2.0 2.8 4.0 7.8 0.95 3.98

4 2.0 4.0 5.6 7.8 0.95 4.35

* Number of Angular sectors equals 16.

The percent error is based on the exact solution and is presented for

both conforming elements. First, note that the error in velocity

S(i,1Tr/2.) for sector element (3) is constant at 0.957, regardless of
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the number of rings or the relative size arrangerient of those rinps.

Thus, radial refinement is not required, and does not improve the

results obtained with this element. The reason for this behavior is

due to the functional dependence of r in the trial function Since

the exact solution behaves as COSO/V , then the trial function

contains the correct form for the radial variable. This behavior

suggests interesting possibilities for other types of problems which

will be discussed in more detail in a later section on reconmendation

for further work. Secondly, note that refinement of parameter oc

for sector element (2) significantly affects the solution. For this

element the radial dependence of r in the trial function is different

from the exact form; therefore, to achieve convergence, refinement of

ok is necessary.

Three other interesting observations can be made about element (2)

from the data in Table I. First of all, radial refinement alone ¢ill

not drive the error to zero. For a given number of angular divisions

.here is a certain number of rings beyond which the solution does not

get closer to the exact one. This behavior is detected by observing

the rate at which the error decreases as more rings are added.

Secondly, if only one additional ring is to be added to some base-line

discretization (represented by 3 rings in Table I) then the location

of that ring is cricial. For example, approximately 441 reductiun in

error is achieved by dividing the first ring into two rings of pro-

portional thickness (as illustrated by line two in the table). Similar

divisions of the second and third rings result in approximately 11f

and 2. reduction, respectively (as illustrated by the last two lines

in the table). Thirdly, for all of the discretizations shown. the
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error obtained from the new elemcit, element (3), is significantly

less than from the bilinear element. element (2).

Next, the effect of refining only the angular size parameter

is examined. Refinement of this parameter is required of both con-

forming elements to achieve convergence. The number of rings and

location of the farfield boundary remain fixed. The tangential velo-

city at &= ±1r/2. is presented in Table II for different angular

Table II - Point-wise Error for Conformal
Sector Elements with Angular Refinement- ,

nbier 7fe (1, - r/z Percent Error

of Sectors Element (3) Element (2) Eleent (3) Element (2)

4 1 7038 1.6484 14.81 17.58

8 1.9244 1.8569 3.78 7.16

16 1.9810 1.9108 .95 4.46

32 1.9952 1.9244 .24 3.78

48 1.9979 1.9269 .11 3.66

-Number of rings equals 3.

The error in velocity at 0 =,T/; for the new element can be shown to

decrease by O( t). The bilinear element converges rapidly for a

couple of refinements in , but then a point is reached where further

refinement produces very little change of results. This same

behavior was observed in Table I for radial refinement. Thus, for

element (2) both the radial and angular size parameters must be
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refined simultaneously with some other parameter such as element

aspect ratio held constant.

Incompressible Flow With Circulation

Most of the discretization questions discussed for flow without

circulation also apply when circulation is present. The required far-

field boundary location, the effect of element refinement, and the

characteristic differences between the two conforming elements are

unchanged by the addition of circulation. The only remaining dis-

cretization question that needs to be answered is whether the relative

arrangement of elements about the stagnation point has an impact on

the value of circulation predicted.

Circulation. In general, the value of circulation obtained from

the solution depends upon the relative location of the stagnation point

within the element containing it. To quantify this statement Table III

presents the error in predicted circulation for a number of discreti-

zations. The data in this table was obtained with the use of element

(3) with the farfield bmndary located at RFF' and stagnation point

at 9:-Ir/6.
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Table III - Error in Circulation for Sector Element (3)
for Stagnation Point e -"F/6

Angular Number Number % Error in
Sectors Element Nodes Circulation

8 16 27 11.6

12 24 3) 24.0

16 32 51 5.5

20 40 63 4.6

24 48 75 11.6

32 64 99 2.9

40 80 123 2.2

The error in circulation appears to behave irratically as the number of

angular sectors is increased. One would expect the error to decrease

as the parameter is refined. The reason for the erratic behavior

is due to the relative difference in locations of the stagnation point

within the appropriate stagnation element as q is refined. When

location differences are accounted for, then the error in circulation

does decrease as q is refined. For example, for angular divisions of

12 and 24 the stagnation point lies on a node. Doubling the number of

angular divisions from 12 to 24 reduces the error in circulation by

approximately 50%; although, the magnitude of error is greater than for

solutions with fewer angular divisions (i.e. larger elements). Also,

doubling the number of angular divisions from 8 to 16 and again to 32

shows an error reduction of about 5MI for each doubling. The same

observation holds true for the division from 20 to 40 sectors. So,

one may wonder, what causes the erratic behavior?
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A search was made to determine if an optimum point exists within

the stagnation element such that the error in circulation is minimal.

Such a point was found to be the angular centroid of the element. Once

the stagnation point is established, then the flowfield should be dis-

cretized to permit the stagnation point to be located at the angular

centroid of the stagnation element. For instance, in order for a

stagnation point at &= -iT/6 to occur at the proper location in the

element, either 6, 18, or 30 angular divisions should be used. Table

IV gives the results from both conforming elements using these angular

divisions and 4 rings of elements.

Table IV - Error in Circulation for Conforming
Sector Elements with Stagnation
Point e T-rr/( Located at the Optimum
Point.

% Error in CirculationAngular Number

Sectors Nodes Element (3) Element (2)

6 28 0.0144 3.797

18 95 0.0080 0.597

30 155 0.0032 0.597

It is readily apparent by comparing the results presented in Tables

III and IV, that the error obtained for circulation strongly depends

on where the stagnation point is located in the stagnation element. The

error is maximum when the stagnation point coincides with a node, and

it is minimar, when the point lies half way between two nodes. It is

also apparent that for a given discretization the new element provides

by far the best approximation, although acceptable results are obtained
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from the bilinear element for the coarse discretizations presented.

Velocity Distribution. Figures 10 and 11 give velocity distri-

butions obtained from each of the conforming elements for the discreti-

zations presented in Table IV. The exact solutions are plotted for

comparison purposes. Accurate estimates of the velocity profile are

achieved whenever the circulation can be predicted correctly

Compressible Flow

Iterative Algorithm. The iterative solution algorithm for con-

stant coefficients defined by eq 44 converged for subsonic flow and

even for flows where the local Mach number exceeded one. It is believed

that a minor disagreement between the onset of transonic flow and the

simultaneous occurrence of a change in the differential equation from

elliptic to hyperbolic, accounts for the convergence for slightly

supercritical flow. Since the small-disturbance equation is not totally

applicable for compressible flow over a cylinder, and since it is

locally linearized by constant local coefficients, then it does not

change types at exactly the same Me. for which the local Mach number

exceeds unity. The local Mach number must exceed unity to the extent

that an element becomes supersonic (engulfed within the supersonic

bubble) before the equation changes types. The occurrence was created

by fornulation assumptions and would not occur if the nonlinearity were

treated in a more exact manner. When the differential equation for one

or more elements becomes hyperbolic the iterative solution diverges.

A few reported "upwinding" algorithms were attempted, but none Proved

successful and the attempt was abandoned for the cylinder. The new

"upwinding" technique described for the airfoil was not tried and may
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prove useful for transonic flows.

Critical Mach Number. The critical Mach number M,,= 0.403 was

predicted for a discretization of 64 elements with 80 nodes. This

value compares well with that obtained by Imai (Ref 30), who used a

Janzen-Rayleigh method of third order. Table V shows a comparison of

critical Mach numbers reported by several investigators. Greenspan

(Ref 32) used finite difference methods in conjunction with a varia-

tional principle. Habashi (Ref 31) used linear triangular elements as

discussed in Chapter I.

Table V - Comparison Critical Mach Numbers

Source of Results AA % Difference*

This Report 0.403 -0.32

Imai (Ref 30)

3rd.-Order 0.4043 0.00

2nd-Order 0.4090 1.16

1st-Order 0.4206 4.03

Habashi (Ref 31) 0.40-0.42 -1.06 to +3.88

Greenspan (Ref 32) 0.404 -0.07

* % Difference based upon Imai's 3rd-order approximation.

Velocity Distributions. The velocity distributions for M. = 0.3

and 0.4 are presented in Fig 12. Imai's third-order accurate results

are presented for comparison purposes. Agreement is good over
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approximately 60 degrees of a quadrant. Differences are more pro-

nounced in the neighborhood of T/a. It is in this region that finite

element results for smaller elements are not as good as those reported.

It is believed that the error resulting from using the small-disturbance

equation is responsible for the deterioration when smaller elements are

used. Velocity perturbations in this region approach or exceed L%
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VI Results of Flow Over a Nonlifting Airfoil

Finite element results are presented for a symmetric, 6%-thick,

parabolic-arc airfoil. Pressure coefficient distributions on the

upper surface of the airfoil are computed from the finite element

solutions of the potential function in domain X2F . Appendix D con-

tains the computational details of this process. Distributions of

the pressure coefficient are presented for a range of Mach numbers

from zero up through the transonic, mixed-flow regime. Where possible,

these distributions are compared with experimental data and distribu-

tions computed from classical thin-airfoil theory, finite difference

methods, and other finite element methods. Convergence properties of

the iterative solution algorithm are investigated. In addition, con-

vergence properties of the pressure distribution as a function of

discretization refinement and location of the farfield boundary are

established.

Discretization Effects

When the flow domain XZF is discretized several decisions must

be made concerning the flowfield size and arrangement of elements. For

instance, one must decide where to place the farfield boundary. Should

it be relatively close to the airfoil or far from it? How many

elements should be used? If smaller elements are needed to improve

the accuracy of desired results, then how should the discretization

be refined? Should the discretization of the entire flow domain be

refined? Will refinement in a subregion of f1 F improve desired

results? If so, then which subregion? Answers to these and related

questions are given
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Farfield Bounday Location. The farfield boundary location of

flow dormain -nF can be characterized by two parameters Ymax and

Ymax as shown in Fig 13 The solution for the airfoil problem as

formulated could be obtained for any combination of Xmx and Ymax-

One could select relatively large values for these parameters, but

from a computational viewpoint this approach may be prohibitive. One

would like to select the smallest possible region to reduce the cost

of computing a solution without sacrificing desired accuracy. Thus,

lower permissible bounds of Y... and YMa were estimated from a series

of solutions obtained from elements of fixed size. First, a baseline

solution was computed for a given value of Ymax and Ymax. By adding

additional elements to the outer perimeter of the flow domain a

succession of solutions was obtained for increasing values of Xmax

and Ynax. By holding the element size constant and varying only the

number of elements used, the effect on the pressure distribution as

a function of only the location of the farfield boundary could be as-

sessed. This process was done twice, once to get a bound on Xmax for

Ymx held constant and vice versa. Figures 14 and 15 show the effect

on the pressure distributions obtained by this procedure for Me, = 0.

There is nothing magic about selecting the number 3/2 for the parameter

held fixed. Any greater value could be chosen to demonstrate trends.

The table in Figs 14 and 15 gives the numerical values of the pressure

coefficient at the midchord of the airfoil. From the trend of this

data the pressure coefficient converges from below as Xnax and Yrax

are increased. This means that the perturbations velocities O con-

verge from above as the farfield boundary is extended. From the data

presented in these two figures there appears to be a farfield boundary
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location beyond which pressure distributions are unaffected as the

boundaries are extended.

Other descriptions of convergence are provided in Figs 16 to 19

which include the effect of Mach number. The pressure coefficient

in these figures is normalized with respect to its converged value.

Figures 16 and 17 are for the 1/4-chord point (also 3/4-chord) while

Figs 18 and 19 are for the midchord point. Convergence trends are

the same at these three points and as demonstrated in Figs 14 and 15

for incompressible flow, the trend is similar for the entire distribu-

tion.

What conclusions can be made concerning the farfield boundary

location from these figures? First, the curves show that farfield

boundaries more than 3 chord lengths from the origin will not appreci-

ably improve results. In fact, farfield boundaries could be chosen

closer with little effect. For example, less than 47, error occurs

when farfield boundaries are located as close as 3/2 chord lengths.

Secondly, the effect of Mach number on the lower bound for Ynax is

opposite to that for Ymax- For a desired degree of accuracy Xmax

can be taken smaller while Ymax should be larger as Mach number in-

creases. This behavior is not surprising in light of the Prandtl-

Glauert transformation which stretches the y -variable as Mach number

increases. Thus, perturbations need more distance in the -direction

to dissipate.

Farfield Boundary Conditions. Associated with the farfield

boundary location is the condition imposed there. For nonlifting flow

the farfield boundary condition for the potential is given by eq 50

with r 0 . The first and last terms of that equation can be expressed
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as

L N L

ObFF 4F +4- (64)

NL L
where OFF is of higher order than 4F, as previously discussed. Now

suppose that the above boundary condition is modified by a constant

and written as

~FF~ ~ ±~$~)(65)

* .) Ihen - j , the condition is identical to that of Klunker. eq 50

For any other value of W the doublet strength expressed in eq 50 is

proportionally .odified. Recall that the term comes from an

integration of 0 over the entire domain whnich means that it depends

upon the solution. When this term is kept in the farfield boundar-,

condition to compute the solution for the n-th iteration of , then

velocity O from the previous iteration is ,used.

Now, consider the effect on the pressure coefficient as K is

varied from 0 to 1, as shown in Fig 20 for incompressible flow K -

is a bounding condition for the distribution of pressure coefficient

-p .Increasing, K has the effect of translating the Cp distribu-

tion uniformly toward more neg!ative values. Since convernencc of

Cp is from below, as will )e shown in the next section, then in-

creasing K can produce very accurate resuilts fc" relatively coarse

discretizations (i.e. ]ame elements). In fact, for any re,' is? I

discretization that mi,,ht be used a value of K can bc found tha cl1

provide Cp approximat ions that accu rately ntch ]imown or experi -

mental results. All of the results presentted in this chapter are for
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For compressible flow the effect of keeping the nonlinear far-

field boundary term is not significant (Ref 13). Since this term is

of higher order (Ref 18) its contribution is negligible particularly

for subsonic flow and even for Mach numbers which produce transonic

flow. For example, the average change in the solution for the pressure

coefficient with the nonlinear boundary term included is only: 0.09/.

for M.= 0.5, 0.327 for M,= 0.7, and 0.85% for Ni = 0.8. Due to

the computational nature of 40; and its minimal effect on the solution,

it may be neglected in favor of reducing computer time.

No other type of farfield boundary conditions were studied; how-

ever, several other possibilities could be tried and will undoubtedly

be the basis for further study.

Element Refinement. In order to study the point-wise convergence

of the pressure coefficient as element size decreases, all other dis-

cretization and solution parameters were held fixed while element size

was varied. Figure 13 shows a typical discretization of the flow-

field governed by parameters NDX, NDY, and NDXA which are defined in

the figure. The farfield boundary was located at Yax = Ymax 1.50.

Element refineent was done 4 ways:

(1) All elements in the flowfield were uniformly decreased

in size.

(2) Only elements above the airfoil were decreased in width

only while those for IXI M M" were held fixed (see Fig 13).

- I(3) Elements for 1I)Z O, were refined in width only while

all other discretization parameters were held fixed

(i.e. changing 6)( for f/Z0o5while d( for IX [ o.
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and AS for are fixed; see Fig 13),

(4) All elements were refined in height (i.e. giving more

layers of elements) while all other discretization

parameters were held fixed.

Figure 21 shows the effect of uniform element refinement (i.e. proce-

dure I above) on the solution for the pressure coefficient for M = 0.

The exact curve computed from thin-airfoil theory is also shown for

comparison purposes.

Two observations can be made from Fig 21. First, the step function

for each of the approximations intersects the exact curve at some point

in the interval of the step size. Thus, even the approximation from

'I the most coarse discretization is not unrealistic. Secondly, the

point-wise error over most of the chord decreases with a corresponding

decrease in element size. In an average sense, the error in pressure

decreases with element refinement. Further, the point-wise convergence

at the midchord appears to be very rapid compared to that at the

leading and trailing edges. The description of pressure coefficient

at the leading and trailing edges improves as the elements become

smaller, but improvement is slower than for other points on the air-

foil. Special finite element treatment may be needed for regions near

the singular points to improve the convergence there. The results in

Fig 21 show that the solution trend is correct, in that, it approaches

the exact solution as element size approaches zero.

Refinement of elements only in the region over the airfoil

profile (i.e. procedure 2) has a slightly different effect on the

pressure distribution than does uniform refinement of all elements

in the flowfield. The coefficients of pressure for refinement of
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disci atization parameter NDXA alone are presented in Fig 22. Note

that the actual shape of the pressure distribution is more well de-

fined with smaller elements due to the step-function nature of

pressure, but the pressure at the mid-point of each step does not

show substantial deviation from the exact solution with refinement.

The greatest change with refinement of NDXA occurs near the leading

and trailing edges where better definition of the pressure coefficient

is obtained as the elements become smaller. The change near the peak

is almst insignificant by comparison.

The difference in the behavior of pressure for the two refinement

procedures described thus far suggests a discretization technique.

First, discretize ALF with relatively large elements everywhere and

refine the element size until there is little change in the pressure

coefficient at the midchord. Then, for better definition of the dis-

tribution refine only the NDYA parameter. Perhaps an improvement on

this technique would be the use of variable size elements with the

smaller elements located near the leading and trailing edges.

Refining elements beyond the airf Al leading and trailing edges

(i.e. procedure 3, refining parameter NDX only) has little effect on

the pressure distribution except in the two elements containing the

leading and trailing edges respectively; refer to Fig 23. The varia-

tion of pressure that occurs in these two elements does not appear to

be directly related to the change made in the refined elements. The

fact that 9p changes at all is due to the decrease of size in

elements adjacent to the leading and trailing edge elements. It

clearly points out that "for points farthest removed from the elements

refined, the a.,iller the change the refinement makes." This "truism"
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is detected in Fig 23 by noting the decredes.ng rate of change in

pressure as the midchord is approached from either direction.

Refinement of MDY with all other discretization parameters held

fixed (i.e. procedure 4) significantly affects the pressure distribu-

tion as shown in Fig 24. Changes occur rapidly near the peak, but

are slower near the leading and trailing edges. The width of the

elements as well as the height needed to be refined near these points

to improve the resulting approximation.

Incompressible Results

Figure 25 shows a comparison between the finite element solution

for the pressure coefficient and the exact curve computed from thin

airfoil theory. The pressure coefficient is a step function, but when

the midpoint value in each step interval is plotted the comparison

with the exact solution shows good agreement. The finite element

solution was obtained using discretization parameters: Xmax = 1.5,

Ymx = 2.0, NDX = 8, NDXA= 18, NDY = 8.

Another interesting couparison is shown in Fig 26 where the

finite element solution is compared with a finite difference solution

obtained from Ref (40). The finite difference solution was obtained

using a constant grid step size £ = 0.125 everywhere. The

finite element results were obtained using the same step size over the

airfoil surface (i.e. W(A = 0.125), but the other element dimensions

were twice as large as that used in the finite difference calculations

(i.e. A = 0.25, 4 = 0.25). The degrees-of-freedom for the two

solutions were 119 nodes for finite element and 350 grid points for

finite difference. The accuracy achieved by the finite element method
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is clearly better than for finite difference.

Compressible Subsonic Results

The flow is subsonic at all points in the flow domain SL F

* as long as the coefficient of OXX in the governing differential

equation remains positive. When the free-stream Mach number is in-

creased slightly above a critical value, then the coefficient of

becomes negative in a small subregion of Z F and transonic flow begins.

Before discussing results for compressible subsonic flow, the conver-

gence behavior of the iterative solution algorithm for Mach numbers

through the subsonic regime up to the onset of transonic flow is con-

sidered.

Convergence of Iterative Scheme. Recall that the approximate

solution of the governing differential equation was written in

iterative form as expressed by eq 58. Also recall that convergence of

the iterative solution scheme was governed by the criteria specified

in eq 45. For C- O,(XIo the number of iterations required to

achieve convergence of eq 58 is presented in Figs 27 and 28 as a

function of Mach number. For the data in these figures, solutions

were started by setting all nodal values of potential equal to zero.

For low subsonic flow @,O:E M O._ 0, ) the number of iterations re-

quired for convergence of the iterative scheme is five or less.

Fewer iterations were required when solutions were started from better

initial guesses. For example, fewer iterations than given in Fig 27

were required to obtain a solution for Mao=O,- when the iterative

scheme was started from the solution for M = 0. 1, As the Mach

number was increased to M.,= 0. the slope of the convergence curve

increased, but convergence still occurred in seven or less iterations.
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At approximately M 0 = 0,8 6 a sharp increase in the number of

iterations occurred as indicated by the vertical segment of the curve

in Fig 27. At this Mach number a small supersonic bubble has formed

in the flow above the midchord of the airfoil and the equation has

locally changed type. For M O, 0.85 the iterative solution scheme

no longer converged in the sense of eq 45 for small values of .

What happened to the solution of the potential function for each

iteration is illustrated in Fig 28. In this figure the percent change

in the nodal value of 0he potential function at the midchord was com-

puted from & -0(=(0- (P)/0 1 and plotted as a function of the

iteration number for Mach numbers from 0.50 to 0.86. The solution was

initiated by setting the potential function equal to zero at all nodes.

As observed in Fig 27, for low subsonic flow the potential converges

rapidly, but for MD=0. .95 the potential function does not converge

at all. Initially the solution gives the appearance of converging as

it does for lower Mach numbers, but then an iteration is reached

(iteration 6) where the apparent convergence trend begins to reverse

itself. This behavior occurs because the governing equation has locally

changed type from elliptic to hyperbolic in a small region above the

michord. Further iterations produced what appears to be a diverging

solution scheme. In actuality the solution does not diverge, but

cycles back through the "bucket" shape shown in Fig 28. The behavior

for larger Mach numbers was similar to that shown for M,= 0.8s. In

general, the "bucket" shape moves to the left and upward indicating

that fewer iterations are required before the solution develops to

the stage where transonic flow occurs.

Comparison of Results. First, the distribution of pressure
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coefficient for a given discretization is shown in Fig 29 as a

function of Mach number. The distributional shade of C is slightly

different than predicted from linear theory, where Cp scales with

Mach number by a factor (i- ) • The departure from linear theory

is not significant but is attributable to the presence of the nonlinear

term in the differential equation, which begins to become significant

for Mach number near M -O .tMore discussion of nonlinear effects

is included in the next section. Figure 30 compares finite element

results with experimental data obtained by Knetchnel (Ref 39) for

M = 0.70? . Good agreement exists over most of the airfoil. For

comparison purposes a finite difference solution (Ref 40) is given for

M =, 0.7 (which is 1% lower than for other results). In addition,

the exact-linear, thin-airfoil-theory results obtained by scaling the

incompressible solution are shown. The farfield boundary locations were

the same for both the finite element and finite difference approxina-

dions (Xmx = Ymax = 1.5). However, the number of nodes used for the

finite element method was more than an order of magnitude less than the

number of grid points used for the finite difference method (i.e. 225

nodes compared to 8514 grid points, respectively). The finite dif-

ference solution does not compare with the experimental data as well

as either the finite element or the exact linear solutions.

Figure 31 compares Cp distributions for M, z 0. 8 obtained

from the present finite element solution, finite difference solutions

(Ref 40), and from linear, thin-airfoil-theory solutions. The

difference in pressure distributions between the solutions from

linear theory and the two numerical solutions based on nonlinear theory

are readily detectable. Differences between the finite element and
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finite difference results occur for the entire distribution. These

variations are due to the inherent difference in approximations achieved

by each method and, perhaps to a lesser extent, the finer mesh size

used for the finite difference solution.

Transonic Flow

Iterative Behavior of Solution Sche. As discussed previously,
the iterative solution algorithm does not converge, as it does for sub-

sonic flow, once a supersonic bubble larger than half of an element

forms in the flowfield. Figures 32 and 33 show solution results after

each iteration for Mach numbers equal to 0.84 and 0.86 respectively.

The solution shown in Fig 32 converges in the sense of eq 45 after 12

iterations for a tolerance of .OSYKIO . The peak Cp is slight-

ly above the critical value of C = 3Y7, but the supersonic bubble

only engulfs approximately half of the element which straddles the

point of maximum thickness. When the Mach number is increased to 0.86

the solution fails to converge. Figure 33 shows what happens to the

solution for the first 6 iterations. The solution remains symmetric

(shockless) and after 3 iterations, more than one element is contained

in the supersonic bubble. Solutions for further iterations (except

iteration 8 which goes off the page) are shown in Fig 34. The spike at

the midchord continues to increase until iteratien 9, when it changes

sign and creates a crevice at the midchord. Further iterations result

in the fallen spike being rebuilt, whnich eventually occurs, and then

the process is repeated. Thus, the solution is oscillatory, and although

it never converges neither does it diverge. If the Mach number is in-

creased further, violent oscillations occur and eventually the solution

diverges.
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Figures 32-34 were included only to illustrate the behavior of

the solution at the on-set of transonic flow when the finite element

solution is obtained as if the problem was elliptic. When the co-

efficient of 0, Xy in the differential equation becomes negative,

the differential equation changes type from elliptic to hyperbolic

which forms the supersonic bubble in the flow. Since elliptic dif-

ferential equations are fundamentally different than hyperbolic ones,

then formulations and algorithms suitable for elliptic equations are

not expected to be valid for hyperbolic equations. At this point in

the solution scheme, the "upwinding" techniques described in Chapter IV

were employed.

Upwinding Techniques. The upwinding techniques that were reported

in the literature, as described in Chapter IV, were tried for the tran-

sonic flow problem. None of the reported techniques were able to

stabilize the iterative solution scheme, and a discussion of the

solution behavior for each of these techniques is omitted. In general,

when they were employed one of two things happened. First, for most

cases considered, the application of the upwinding technique caused the

iterative solution scheme to diverge immediately. Secondly, for a few

cases where the solution scheme converged, it converged to a solution

that was not physically meaningful. Due to the inability of the

reported upwinding techniques to stabilize the solution scheme, other

upwinding schemes were sought. As a result, the new proposed up-

winding technique was developed.

Recall that the new upwinding technique described in Chapter IV

modifies the finite element formulation to account for the hyperbolic

character of the equation for those elements within the supersonic
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bubble. The behavior of the upwinding procedure is governed by two

parameters R and U. Equation 62 gives the modification of the

finite element formulation of the governing equation by these two

parameters for elements within the supersonic or hyperbolic bubble.

The behavior of the solution as a function of these two parameters is

shown in Figs 35 to 39. For the airfoil considered, the numerical

values of R and V fall somewhere in the ranges: O - O - and

_ ly_ !So.

The behavior of the solution (pressure distribution) as a function

of upwinding parameter V for fixed values of M and parameter R is

shown in Figs 35-37. Although a different value of R or Mis held

fixed in each of these figures, the effect of Lf on the solution is the

same in each case. The function of V is to change the symmetry of the

flow. If LV is set equal to zero (corresponding to the upwinding scheme

not being employed), then the distribution of Cp remains symmetric

about the midchord, as shown in Fig 33. Note in Figs 35-37 that for

increasing values of V the distributions are skewed downwind. Pressure

gradients become greater on the downwind side of the peak value, in the

vicinity of an expected, weak compression shock. Thus parameter V

not only alters the symmetry of the pressure distribution, but it also

appears to capture the behavior of weak shocks by permitting relatively

large discontinuities of velocity to occur aft of the peak pressure.

This behavior is particularly evident in Fig 37 for 1f C-.VO.

The behavior of the solution (pressure distribution) as a function

of parameter R for fixed values of V is shown in Figs 38 and 39. The

distribution of pressure coefficient is not substantially affected by

changes in parameter R except near the peak. In this region increased
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values of R produce larger peak pressures which means aft of the peak

larger gradients of pressure are produced. Thus parameter R also

appears to be contributing to the numerical mechanism of capturing the

weak compression shock. Recall that the function of R is to retain

part of the nonlinear term on the left-hand-side of the governing

equation and to subject the remining part *o the upwinding operation.

Judging from the results in Figs 38 and 39 it may be necessary to keep

part of the term on the left-hand-side of the equation, which means

that an inversion must be done for each iterate. If the entire non-

linear term is treated as a force (i.e. R 0 ) then accuracy may be

sacrificed. The value of R for the cases considered range between

0.2 and 0.3 for best results.

If R is arbitrarily selected, say R - Ro , for given values of

M.and U , then one of three things could happen. First, if Rk is

picked too large the solution will either diverge or oscillate about

some solution as demonstrated in Figs 33 and 34. For this situation

not enough of the nonlinear term is subjected to the upwinding operation

to permit convergence of the iterative scheme. Secondly, if R0 is

picked too small, then too much of the nonlinear term is altered by

the upwinding process. As a consequence, even if the solution

algorithm converges, the solution may not be as close to the true

solution as it could be for a larger value of Rn.. Thirdly, if Ro.is

appropriately chosen, the iterative scheme will converge to an accurate

solution which correctly describes the physics of the problem as

shown for the examples in the next section.

In general, the values of R and U depend upon the airfoil shape,

Mach number, and the angle of attack for lifting airfoils. When
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values of R and V are correctly chosen, then convergence occurs rapidly;

usually less than 15 iterations are required. If, on the other hand,

they are not correctly chosen, then the iterative scheme will not

converge. After a couple of iterations the scheme will reach a point

of divergence which indicates that the other values of R and VJ should

*be selected for the case being considered. Unfortunately, there are

no known analytical expressions which select the best values of R and

VJ for specific airfoils and flow cases. The values can be determined

iteratively as suggested by the procedure in Chapter IV. This proce-

dure first requires that "ballpark" values of R and U be found which

permit convergence of the iterative scheme. Next, R and tare "fine

tuned" to select the "best" possible values.

Comparison of Results. Finite element solutions for transonic

flow over a 6% - thick parabolic-arc airfoil are compared with experi-

mental data obtained by Knetchel (Ref 39), finite difference calcu-

lations of Olsen and Batill (Ref 40) and also those of Olsen (Ref 60),

and with finite element solutions of Akay (Ref 24). For M = ,q0o8,

finite element solutions for the pressure coefficient are presented

in Figs 40 and 41 for seven discretizations of the flow domain 11F, as

specified in Table VI.
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Table VI

Domain Discretization Parameters,
For M.,= 0.g06

Grid NDX NDXA NDY Nodes

1 8 5 6 98

2 8 7 7 128

3 8 7 9 160

4 6 14 9 210

5 6 9 13 224

6 6 9 13 224

7 6 11 11 216

By comparing the solutions for the pressure coefficients given in

Fig 40 with those given in Fig 41, a significant difference in behavior

is noticed only in the vicinity of the expected, weak compression

shock. In Fig 40 for grids 1-3 at a location eight-tenth of a chord-

length from the leading edge ( XI = , a comparatively large jump

in Cp (9" -) occurs between adjacent elements. This behavior occurs

naturally in the solution process and is associated with the occurrence

of a weak compression shock which occurs in the flow domain to permit

the fluid in the supersonic bubble to return to subsonic conditions.

The occurrence of the jump at XLE = 0'8 was not forced by inposing

any shock jump conditions. but it is an inherent consequence of the

potential formulation of the problem, the finite element approach

selected to solve the problem, and the use of the new upwinding schene

governed by parameters R and J. Since the velocity potential function

is being solved for, and since elements were selected which insure only
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continuity of the velocity potential function across inter-elent

boundaries, then jumps or discontinuities in the derivatives of the

potential function (i.e. velocities) across inter-element boundaries

are inherently expected to occur. From small-disturbance theory, the

pressure coefficient is proportional to the velocity in the x-direction,

thus a corresponding jtmp of pressure between elements. The signifi-

cant part of this behavior is that the jump is of sufficient magnitude

to allow the flow to change from supersonic to subsonic conditions by

crossing an element boundary line, thus an ideal shock of zero thickness.

This particular behavior occurs only when the discretization is arranged

in such a manner that a node occurs at the location where the weak

shock would like to impinge upon the airfoil.

The solutions presented in Fig 41 are notably different in the

vicinity of X - 0.8 . For these solutions the discretization does

not place a node at XE 0 ,8 ; the discretizations straddle that

point instead. Since the shock should occur at XLE =0- .5 , then it

must occur within an element rather than on its boundary. However,

there is no numerical mechanism for the shock to occur within an

element, as there is between elements. Consequently, two jumps are

required to return the flow from supersonic to subsonic conditions.

For these discretizations the solutions smear the shock over the span

of one element and two successive inter-element boundary locations.

The difference between solutions given in Fig 40 and those given

in Fig 41 is more graphically denonstrated in Fig 42, where solutions

for grids 3, 6, and 7 are compared. The symbol at the peak of each

distribution indicates the location of the expected weak shock, which

is denoted by the vertical arrow at )4 E o. , . All other symbols

116



67. - Thick Parabolic-Arc Airfoil

mw,= 0. 908

A Grid 3 (XLE 0. 800)

0 Gr id 6 (XLjE = 0. 77 8)

Grid 7 (XI.y 0.750)

o AS
0

0.5 0 .5 0 .

DitneFo LaigEg

00

Fiur 42 EfcKfFern itn
NerteWa hc

0 117



are plotted at the midpoint of the interval (i.e. midway between

nodes) as described previously. Note, as the elements which straddle

the shock become large (i.e. grid 6 as compared to grid 7), the more

the solution is affected in the vicinity of the weak shock. It appears

that smearing the shock over a larger element tends to decrease the

magnitude of the peak pressure, as well as, affecting the magnitude of

the jumps required to return the flow to subsonic conditions. Although

smearing does not provide the best approximation, in terms of describing

the physics of the flow, it does provide an acceptable approximation

without the use or need of shock elements. Better approximations can

be obtained by altering or "fine tuning" the discretizations to provide

solutions similar to those obtained from grid 3.

The new upwind method appears to exhibit characteristics common to

both shock "capturing" and "fitting" techniques. The location and

strength of the weak shock can be obtained without fitting the discreti-

zation in the sense described. However, if better approximations are

required, then the discretization can be iterated upon to fit the

element boundaries so they coincide with the location of the shock.

From the approach taken in this study, the shape of the shock is

restricted to a vertical line segment (i.e. parallel with the y-axis).

In general, the shock may be inclined to the vertical, although it

would remain straight. Discretizations could be devised by rotating

segments of the grid to fit the shock between adjacent elements for

such cases. Neither of the situations represented in Fig 42 would be

possible without the use of the new upwinding technique. Without its

use the pressure distribution would remain symmetric with respect to

the midchord, and the solution algorithm would not converge.
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Convergence is possible only because the physics of the flow is modelled

by excluding the downwind influence on the solution at upwind nodes.

Figure 43 compares the finite element solutions for no smearing of

the shock with the finite difference solutions and with experimental

data. The two finite difference solutions correspond to a constant

grid size (Ref 40) and a variable grid size (Ref 60), respectively.

The latter solution was obtained for smaller step sizes near the leading

and trailing edges and in the vicinity of the expected shock. The

finite element solutions were also obtained from both constant (grid 1)

and variable element sizes (grids 2 and 3). For the variable element

discretizations, smaller (more narrow) elements were placed near the

leading, and trailing edges. In addition, solutions were attempted for

discretizations that were refined only in the region where the shock was

expected to occur. This discretization resulted in a grid where

"needle like" elements were placed adjacent to elements of aspect ratio

near unity. The solution algorithm for such discretizations did not

converge and the idea of using variable size elements to assist in

"capturing" the shock was abandoned. It is believed that the upwinding

technique is applicable only for elements of constant size throughout

the supersonic bubble, and it works best when the aspect ratio of the

elements is near unity. Any substantial departure from a uniform grid

particularly in the center segment (refer to Fig 13) leads to conver-

gence problems in the iterative solution process.

Figure 44 shows a comparison of pressure distributions obtained

from two finite element solutions using different upwinding techniques.

The finite element solution presented in Fig 40 for grid 3 is compared

with the solution obtained by Akay (Ref 24). His upwinding technique

119



o Finite Element - Grid I

' Finite Eleme~nt - Grid 2

A Finite Element - Grid 3

A Experiniental, Ref (39)

--- Finite Difference, Ref (60)

Finite Difference, Ref (40)

0'-

A

C

0.25 0.50 0 .75 0 1.0

0 Distance From Leading Edge

f 
C4

CD

Figure 43 -Comparison of Results for a 60/-Thick
Parabolic-Arc Airfoil for M,, 0.908

120



IA IL ihit C' EKltcn Grid 3

0 Akav's FinitA' Flumtint, Ref (24)

Cf

F --llt -i' - Exparime f FieFentlR (')

RC311s fo I ''hikR1-lA lc

Ar i oiI o0 M.

0121



differed from that used in this study as described in Chapter IV. It

consisted of replacing the velocity S by (i+ ) p + , where

t,. is the velocity upstream of element e .The value of e was taken

to be 0.20. The results of this study agree with the trend of the ex-

perimental data and the finite difference solutions much better than

do Akay's predictions. It is believed that the difference in upwind

techniques, rather than formulation methods is what accounts for the

variation between the two Cp distributions.

Figure 45 compares the distribution of Cp(V=O) with experimental

data for a 6%-thick parabolic arc airfoil at M = O.qZ . Domain

S4 was discretized with grid 7 described in Table VT. Upwinding

parameters of R = 0.20 and 7r. = 0. Ywere required to obtain conver-

gence. Essentially the same behavior observed for the solution for

M= 0.90 aapplies to this case. The shock is smeared over one

element and the pressure distribution agrees with the trend of the

experimental data.

In general the new upwinding technique gave acceptable results.

A number of other upwinding techniques described in Chapter IV were

tried. None of these gave satisfactory results, although each tech-

nique did alter the synetry in the flow. In most cases the initial

application of the upwinding technique resulted in a dramatic change in

the flowfield velocities. As a result, the solution scheme either

diverged after one or two iterative steps, or it oscillated without

regularity about some solution. The possibility exists that these

upwinding techniques could be modified to provide successful application,

but no such alterations were found in this studv.
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VII Summary, Conclusions, and Recommendations

The Galerkin Finite Element Method was used to obtain approximate

solutions of the steady, transonic, small-disturbance, velocity po-

tential equation for flow over a circular cylinder and thin airfoil.

Circular Cylinder

Incompressible Flow. One non-conforming and two conforming sector

elements were used to solve the problem of incompressible flow without

circulation over a unit circular cylinder. The non-conforming element

was rejected because the solution error became significant as element

size was refined. It gave accurate approximations only for coarse

discretization of the flowfield. Velocity distributions calculated

from the two conforming elements agreed well with the exact solution.

In general, the new sector element gave more accurate solutions than

the other sector element, which was based upon a conventional bilinear

polynomial approximation. The new element was developed from a trial

solution using rational functions. For incompressible flow over the

cylinder the radial size parameter of the new element did not have

to be refined to achieve convergence as element size approached

zero. The only refirment required for convergence was the angular

width of the element, which represents an improvement over the conven-

tional conforming element. This element required refinement of both

size parameters with the aspect ratio held fixed (equal to one) to

achieve convergence. Consequently, for a desired degree-of-accuracy

more elements and larger degrees-of-freedom were needed for the

bilinear elemnt than for the new element. This translated into more

computer core-storage requirements and longer processing time to solve
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4 a given problem.

The differences between the two conforming elements used for

this problem showed the advantage of using elements with trial

functions which resemble the expected form of the solution. This

idea could be extended to the airfoil problem, or for that matter, any

problem, providing the behavior of the solution is known. The solution

for the airfoil problem at least in the farfield behaves like I/r . It

may be possible to use rational trial functions (perhaps raised to

some power) to approximate the solution and achieve an element with

improved characteristics.

The utility of the new element is not fully realized for solving

circular cylinder problems. but can be realized when solving airfoil

problems. The sector element could be used to discretize the flow-

field from one chord-length or other specified radius on out to the

farfield boundary. Since the trial function for the sector element

automatically satisfies the infinity condition (as r-4 w ), then the

boundary could be extended as far as necessary to approximately

satisfy the boundary condition there. It is also possible that an

infinite element could be developed from this element by neglecting the

polynomial terms in the trial function. These elements could prove

quite useful in this respect since a farfield boundary condition

given by eq 50 would not have to be used, and the dreadful nonlinear

term that requires integration over the flowfield would not have to

*be evaluated.

Circulation. The two conforming sector elements were used

to solve the problem of incompressible flow with circulation.

A splitting technique was employed which permitted the Kutta or
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4 stagnation condition to be enforced in a convenient manner after

the elementary or component solutions were obtained. Both elements

predicted results accurately. In general, the new element was more

efficient and required less refinement for a given degree-of-accuracy.

The circulation could be predicted with its use to within 0. 0037 of

the exact value for coarse discretizations. This degree-of-accuracy

is possible only when the discretization is constructed in such a

manner that the stagnation point is located at the angular centroid

of the stagnation element. As the stagnation point is moved toward

the edge of the element the error in circulation increases, and

reaches a maximum when the stagnation point lies on a node. Velocity

distributions were accurately predicted by both elements whenever the

circulation was correctly predicted.

Compressible Flow. The new sector element was used to solve the

small-disturbance equation for compressible, potential flow over the

cylinder. The equation was locally linearized by an iterative solu-

tion scheme which converged rapidly for subsonic flows. The scheme

failed to converge for transonic flows when the supersonic zone

engulfed at least one complete element. Predictions of the critical

Mach number and subsonic velocity distributions compared well with

known results.

Thin Airfoil

Bilinear rectangular elements were used exclusively to discretize

the flow domain for the airfoil problem. Cases of incompressible flow

and compressible subsonic and transonic flows were considered for a

nonlifting symmetric airfoil. The governing nonlinear equation was
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written as a sequence of linear equations with variable coefficients

and was solved by an iterative process. The iterative solution al-

gorithn converged very rapidly for low subsonic flows. As the Mach

number approached a critical value the rate of convergence decreased.

For Mach numbers slightly below critical, convergence still occurred

in less than twelve iterations. Convergence continued to occur as the

Mach number was increased until more than half of one element became

engulfed in the supersonic region. At this point the iterative scheme

oscillated about some solution and diverged for still larger Mach

numbers.

To achieve convergence for transonic flows (mixed elliptic-

hyperbolic), the finite element formulation had to be modified to

account for the proper zones of influence for those elements within

the supersonic (hyperbolic) region. Several modifying methods in-

cluding those reported by other investigators were tried. All but

one method failed to produce the desired result. This method is a

new upwinding technique governed by two parameters which exclude the

influence of iterative downwind forces on the solution at upwind

nodes. The new upwinding technique not only keeps the iterative

solution scheme from diverging, but it also captures the weak com-

pression shock which forms in the flowfield.

Accurate approximations for pressure distributions were obtained

for all flow regimes from incompressible to transonic flows. The

simplifying asstmptions and approximations used in this study

represents an exceedingly basic approach to an extremely complex

nonlinear problem. One of the original intents was to demonstrate

whether a simple approach was acceptable. The finite element
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techniques used in this study represent approaches that are about

as basic as one could take. Excluding the use of linear triangular

elements, it would be difficult to conceive of a more fundamental way

to solve the nonlinear small-disturbance equation than the way it was

done in this study. More complicated problem formulations as well as

higher orders of approximation could be used. Some of these approaches

.are described in the remaining section.
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Recomnendations for Future Work

Further development of finite element methods for airfoil analysis

could take numerous directions. Several extensions to the present

effort could be made, as well as, additional approaches to the problem.

Future work will undoubtedly be conducted in the areas of: problem

formulation, element development, application of existing higher-order

elements, singular treatment of the leading edge, unsteady analysis, and

special treatment for the mixed or transonic problem. Each of these

areas will be discussed briefly with specific suggestions for develop-

ment programs.

Problem Formulations. For steady flow three additional inviscid

formulation techniques could be investigated. They are the velocity

formulation for small-disturbance theory and both velocity and potential

formulations for large disturbances.

The small-disturbance potential equation used in this study can

alternatively be written as two equations in terms of the disturbance

velocities (A,\) as

Mo mo ) 4 ( X+ \5-1 Y o (66)

and

=) -- 0 (67)

Boundary conditions are

T 0+t K(68)
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and

(tA,'" - as Y--c (69)

These conditions are Dirichlet conditions which are imposed upon the

trial functions. The manner in which the boundary conditions are

treated using this formulation technique differs from the small-

disturbance potential formulation used in this study. The present

boundary conditions are of the Neumann type which are not imposed on

the trial function. They are, instead, enforced indirectly by the

formulation procedure.

The velocity formulation with the use of linear elements as

used in this study would provide pressure distributions along the air-

foil contour that are linear and continuous, without jumps between

elements. This would be an improvement over the potential formulation

which results in pressure distributions that are step-functions for

linear elements and step-linear-functions for quadratic elements. To

achieve continuous pressure distributions from the potential formu-

lation Hermite polynomials would have to be used as approximation

functions. Along with the improved accuracy of the velocity formula-

, tion over the potential formulation comes the disadvantage that twice

, as many degrees-of-freedom are needed for linear element discretiza-

tions. Two unknowns .t and \J are required as nodal parameters

instead of the single parameter

The other problem formulations which should be further investi-

gated are the full-potential and alternatively full-velocity formula-

tions. The full-potential equation for inviscid compressible flow is
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given by eq 15. This equation could be cast into velocities 1 and

\r and used in conjunction with the irrotational condition. TheseII
formulations would not be limited to slender aerodynamic bodies, since

large disturbances are not excluded by assumption. However, non-

linearity is more severe than for the small-disturbance equation which

will create numerical difficulties. As a first approximation, at

least for subsonic flow, the equation could be cast into an iterative

Poisson equation. Perhaps an upwinding technique similar to that used

in this study could also be tried for supercritical flow. Other
I

solution possibilities exist which should be investigated.

Higher Order Elements. A direct extension of the present study

is possible by using higher order elements to approximate the solution.

Initially, only those elements along the airfoil contour should be

made of higher order with all other elements remaining bilinear. This

arrangement would permit an improvement in the description of the

pressure distribution along the airfoil contour without significantly

increasing the total number of nodal parameters. As a further extension,

all elements could be of higher order. Results from these solutions

could be compared with those of this study to determine the rate of

convergence. (p-type convergence).

Boundary Conditions. Extensions to the present solutions could be

made by applying the tangential boumdary condition along the airfoil

surface rather than along _y= - as done in thin-airfoil theory.

This improvement is not expected to alter results very much for

thin-airfoils, but would be necessary for thick ones. A number of

approximations are possible. First, the actual boumdary shape could

be approximated by suitably shaped elements with the boundary condition
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applied along the appropriate element edge. Secondly, isoparametric

elements with one side shaped to approximate the contour shape are

possible. Of these types several possibilities exist depending on

the order of the element chosen and the actual contour shape.

Arbitrary Thin-Airfoil Shapes For the present approach a com-

putational subroutine needs to be developed to extend the present

analysis for an arbitrarily shaped airfoil. Two extensions are re-

quired to accomplish this goal. First, the nonlinear form of the

governing differential equation will have to be included for lifting

flow. This addition will also require the inclusion of an upwinding

technique when the flow is transonic. These additions will follow the

analysis presented for the symetric transonic case identically, ex-

cept the lower half-space will be included. As a consequence, inte-

gration along the lower airfoil surface will have to be included.

Secondly, an algorithm will have to be added to the subroutine to

compute the finite element vectors and matrices that come from the

boundary integrals along the airfoil profile. These computations will

have to be made from normalized airfoil profile coordinates. Since the

boundary integrals depend on the airfoil slope then a procedure to

accurately describe the slope from profile coordinates is needed. For

a family of airfoils which can be defined by an equation with perhaps

variable coefficients the integral can be computed exactly (numerical

integration may be easier). A separate routine would be needed for

each equation (family) type with the coefficients as input parameters.

New Elements. An interesting study would be to attempt develop-

ment of new elements for compressible flow problems which have

properties similar to the new element used in this study for
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4 incompressible flow about a circular cylinder. The first attempt might

be for the circular cylinder: although, the thin-airfoil may be easier,

due to the decrease in nonlinearity. Trial functions should be at-

tempted which resemble the form of the solution. For the cylinder

problem, forms with ('/r) might be attempted where Y is variable. For

the airfoil problem, forms with and (k, could be tried. Per-

haps, terms which vary as the farfield expression [i.e. X

could also be included.

Shock Elements. An area which has not been successfully treated

with finite element methods for 2-D problems is the correct treatment

of shock waves. Shock fitting techniques could be developed, but a

better and more elegant technique would be to develop a "special" shock

element to capture both the location and strength of the shock. Such

an element would have to be constructed from discontinuous functions.

Since the location of the shock is not known a priori, the element

would have to be sufficiently general to exclude shocks if they do not

appear and describe their strength and relative location within the

element when they do appear. These "special" elements would be used

only in the region of anticipated shock occurrence.

Singularities. For airfoils with sharp leading edges or other

slope discontinuities along the contour there will be local singularities.

Rather than discretizing these regions with extremely small elements to

describe the rapid change of behavior, a local subregion could be

isolated to treat the singularity separately. The use of "special"

shape fimctions which describe the singularity near the singular point

could be included in the finite element analysis. This technique has

been done in applications of other singular problems, such as the stress
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concentration near a crack tip.

Unsteady Analysis. Chan's et. al. work is the only extensive un-

steady analysis to appear in the literature. Additional finite element

solutions for this problem are required. A number of approaches and

formulation procedures are possible. One particular approach which

should be tried for the small-disturbance equation is to assume that

the potential can be expressed as

(70)

The spacial shape functions N'(y) are the same as those used for

the steady problem. What is different is the nodal parameters

are functions of time. Instead of obtaining a set of algebraic

equations to solve, a set of ordinary second-order differential equations

will result for the nodal parameters. For small oscillations about the

mean steady position these equations will be linear and can be solved

by existing methods.
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Appendix A

Shape Functions and Elemental Equations
for Sector Element (1)

This appendix contains a description of how shape or basis

functions are derived from assumed trial functions. The description

primarily pertains to elements used to solve the potential flow pro-

blems formulated in Chapter III for the circular cylinder. This appendix

also contains the derivation of finite element equations for the symme-

tric flow case when sector element (1) is used.

Shape Functions

In general, when a continuum problem is solved by the Finite Element

Method, the continuum is divided into a finite number of elements which

are connected at discrete points situated on their boundaries called

nodes. The continuum which has infinite degrees-of-freedom is replaced

by a finite number of unknown nodal parameters. These parameters are

nodal-point values of the solution function or its derivatives, de-

pending upon the complexity of the approximation desired. Between nodes

(i.e. inside an element) the solution function is approximated by an

assumed functional relationship which can be expressed in terms of the

unknown nodal parameters. The approximating function (trial function)

can be written as a linear combination of the shape functions and the

unknown nodal parameters. For example, consider the incompressible flow

problem described in Chapter III. An assumed trial function for the

sector element shown in Fig 3 can be written as

Q e
~ (A-1)
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where N .(Y) are the basis functions and the nodal value of the

solution at node 3 The repeated index j implies summation from

j- I)..,p +. It is immediately apparent that the shape function should

have the property that

N~r~e) -(A-2)

where .. is the Kronecker delta. For simple elements it is often

easy to select a functional form for the solution and witji the use of

the above property simply write down the basis functions. To insure

that the guessed form produces a conforming element, the required con-

tinuity conditions have to be satisfied. For more complicated approxi-

mations the guess technique may not work very well, and a more direct

method will have to be used (Ref 59). When using the direct method, the

assumed trial function must be written with as many undetermined con-

stants as there are nodal parameters in the element. It could be ex-

pressed as

where (rq) are independent variables and the Q.. are undetermined con-

stants. What is done for the Finite Element Method is to express these

constants as functions of the element geometry and the unknown nodal

parameters , (j ;,,,i) This process is started by first

writing eq A-3 at each node to give a systen of Yi equations expressed as

A

-t Q' O. (A-4)

The constants are expressed in terms of the nodal parameters by
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A

inverting G to give

A (A-5)

Substituting the constants into the trial function, eq A-3, and col-

lecting terms will produce an expression in the form of eq A-I.

To illustrate the direct process, consider trial function (1) for

the sector element shown in Fig 3. Trial function (1) is given in

Chapter III by eq 35 as

Sin a +(35)
C1, + b, C

Expressing 0 at each of the nodes gives a system of 4 equations for the

4 unknown nodal values of These equations are expressed in matrix

form as

ea
01 Sl L ego, saI

(A-6)

Siv b V'6 C

O- C

j Y'6 JL

Inverting this matrix, substituting the constant into eq 35, and col-

lecting like terms of Os will produce the desired form. The resulting

shape functions are
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rsn~b- e8-) Si

N,: (A-7a)

rI rj,
N2 (A-7b)

(\J3~ -~"- &) +(A-7c)

N3 sb r

Y- r6~)S' (A-7d)
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fur--- "-ther i -- -i.- -
.- of - acros in er

element boundaries is guaranteed only along radial lines. Along cir-

cmferential lines d is continuous only at the nodal points. The use

of this element for the second order problem of incompressible flow

over a circular cylinder as formulated in Chapter III will give a non-

conforming approximation.

Elemental Equations

The elemental equations for incompressible flow over a circular

O.J 
e e e

cylinder are expressed by eq 30 as K:#.:".for( , Is., ).
e

Stiffness matrix I(is given by eq 31 as

e

Each element of K ' is calculated by substituting the shape functions

and performing the required integration. For example, the (< com-

e
ponent of Kq is obtained by setting L z - and substituting

eq A-7a into eq 31. The result is

e1  r6 ~ 3  2. S ' o ( b 8
' r (A-8)

where
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Integrating and substituting the limits gives

e +___ 2 --- (A-9)

Note that Kil depends only upon the two elemental geometric parameters

o( and .
-4

The remaining elements of KI('are obtained in a similar manner to

1 give a symetric stiffness matrix of the form

Kt K2. 1<3

e 11 KS 13
kzi : (A-l0)

where

K,~ -3+-
OW C

i: .C O S - - + c

KS+ c
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The constants c b c are given by

H+
-- 2-

1A

SThe force vector - is given by eq, 39 as

K- -; N, Cos (39)

Substituting the shape functions eq A-7 into this expression and inte-

grating gives

, - E?_ CoSe
2b)

sin
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3 a .- S A t C)

-~~~ ~~ SnSL~L 0 )c~

fbL

The constants A)8 C,D are given by

Sin 2 eb - Sir ae-aL

147COSe- CosI

-- - 147



Velocity Distribution

The dimensionless tangential perturbation velocity U ( e )
along the contour of the cylinder is calculated from the potentiale
function. In element , ( ) is given by eq 28

e 4()9 r1(r)4 (28)

Velocity 1Ain each elermnt is defined from the potential function by

-44,
e e
ue-

Along the cylinder surface ( j)

Substituting the shape functions eq A-7 into eq A-12 and evaluating

at Y- = I gives

e Cose
-) (0 )

e

uoC, } =  Cos(& -ea( (A-13)

where
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Appendix B

Shape Functions and Elemental Equations for
4 Sector Element (2)

Lhape Functions

Consider the sector element shown in Fig 3 and trial function (2)

given by

e
(2z 4- br + Cz e + daz (36)

From Ref (27) this approximation can be written in the form NJ c

1, = )' ,4 where

' ' 1 9 b

N1  -(B-la)

(B-lb)0<-I

N3  - - (B-ko)

N q --- Ire, (B-Id)

The shape functions could also be obtained by the direct procedure

described in Appendix A. It is easily demonstrated that the shape

functions provide continuity of across inter-element boundaries. Thus,

element (2) is a conforming element for the finite element formulations

described in Chapter III.
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Elemental Equations

The elemental equations for incompressible flow over a circular
e e e

cylinder are expressed by eq 30 as P' (:*' / "*

Stiffness matrix K~j is given by eq 31 as

ee

Each element of K. is calculated by substituting the correspondingLi e e
I shape functions and integrating. For example, the <,, component of 1<'I

is obtained by setting L- j and substituting eq B-la into eq 31

The result is

C r _

r a - (B-2)

Integrating and substituting the limits gives

+i --- )Z (B-3)

which depends only upon the two elemental geometric parameters o4 and

e
The remaining elements of )1<' are obtained in a similar manner to

give a syniretric stiffness matrix of the form.

-(B-4)
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where

K -a + -q% C K I z&2 - ., 2c +e

k2 +

The constants ac -, 8 in the above expressions are given by

+ 
- +

* (B-5)

The force vector -Fis given by eq 39 as

e 19b
4[ -- Il S : (39)

Subtstituting the shape funetions, eq B-1Linto this expression and inte-

grating givesI

, C(S -Co _

_$. -(B-5)

0

S , Cos - Co.S .
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eThe above expressions define ,"for each element e which borders the

cylinder surface. For all other elements : is identically zero.

Velocity Distribution

The dimensionless tangential perturbation velocity U& ( I) 9)

along the contour of the cylinder is calculated from the potential

function. In element 4e, r&)is given by eq 28

0( ) (28)

e
Velocity U& in each element is defined from the potential function by

eUq 19e) N;o

Along the cylinder surface (r I )

Ue( e)-= (B-6)

For each of the conformal elements this expression reduces to

ee
0, )) (B-7)

Within element e the tangent.lE1 velocity along -:7e contour is a

constant. Thus, between elements there will be a jump in U.. This

implies the velocity distribution is a step function along the contour.

The tangential velocity defined by eq B-7 for element (2) is also

the tangential velocity for element (3) described in the next appendix.
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Appendix C

Shape Function and Elemental Equations
for Sector Element (3)

Shape Functions

Consider the sector element shown in Fig 3 and trial function (3)

given by

+ C3e + 2 (37

4 £ e
This approximation can be written in the form 0 , for(O , "

where

NI (C-la)

-I-o1-I
-. N2. (C-/l-b) -

N3  - (C-c)

(C-id)

These shape functions are determined from the trial function by the

method described in Appendix A. They can also be deduced from the

shape functions in Appendix B by inverting y" and * . This element

represents a new element which to the author's knowledge has not been

used to solve an aerodynamics problem.

Elemental Equations

Incompressible Flow. The elemental equations for incompressible
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flow over a circular cylinder are expressed by eq 30 as

e
, Ktj = . =I'.', (30)

Stiffness matrix is given by eq 31 a3

.= JNc~,', r+' Le',o], )rrdJ (31)

e
Each element of K S is calculated by substituting the corresponding

shape functions and integrating. For example the K, component of

is obtained by setting t-j I and substituting eq C-2a into eq 31.

The result is

Integrating and substituting the limits gives

- (C-2)

* which depends only upon the two elemental geometric parameterso( and

e
The remaining elements of are obtained in a similar manner to

give a symmetric stiffness matrix of the form
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"K KI K3  K Y

e K5- K K3

Ks i';.= (C-3)SKr Kz

e
The elements of K* are given by

The constants Q* -, ' - in the above expressions are given by

Q : dI = 0 *

__-_ 3or'-5
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Ie

The force vector ;, is given by eq 39 as

e
N ) CoSejs (39)

Substituting the shape functions, eqs C-l, into this expression and inte-

grating gives

(C-4)
0

-+ Os bb COS

e
The above expression defines T. for each element e which borders the

e
cylinder surface. For all other elements - is identically zero.

Conressible Flow. For compressible flow over the cylinder the

elemental -quations are given by eq 44 as

+ L t34")] j0 . =:. , + (C-5)

Matrix K,-- and vector €" are the same as defined for the incompressible

problem. Matrix L, (00) comes from the nonlinear term in the governing

differential equation, and is given by eqs 47 and 48. It can be

expressed as

(C-6)
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where

II

' I Y 09N

-((SIVIa Cos Yj'kJtdlK
J) r

a c adD~j = - r-- t4 0 N

a 4r e

Substituting the shape functions, eq C-2, into each of these expressions

and integrating gives

d + , c a -~ 0k .-A

Azj -- z ' i S s(C-7)

3

where

¥ 6

+Le-~ +(eeb) Z'
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+ ~ ~ ~ ~~ S' 19 
Z99)LS 9 8

+~ +

+z-(.e-e ±,) + oZ += -I) ',

9- 2+- + l

Matrix becomes

b3 -b3 -bz
13(- - (C-8)

b3 bz

:61 
3

where

-. 71

... --2 158 158 1

wher

., _ .. ....- 3



3 (ae~) --

t 
b

Matrix . becomes

[ c, o C-3e.
C

C- - (C-9)

where
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I+

C3  .8 - a

The matrix D; comnes from the boundary term which becomes

0 B

The mactr 3jea. comes from the olnea t er l i he ovenn

LII

Sustttigth sae uctins eq C-,it0q4 n nertn

14-1 0 (C-11)

The vector :(.")also comes from the nonlinear term in thegoeng

differential equation and is given by eq 49 as

Substituting the shape functions, eq C-2, into eq 49 and integrating

gives
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where si

11

-4

&C

12 - q

3& 4

Velocity Distribution

The tangential perturbation velocity Ue(I,9) is derived in

Appendix B for element (2), and is given by eq B-7. For element (3)

the velocity is given by the same equation.

Se e-

6(C-12)
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Appendix D

Finite Element Equations for Flow Over
an Airfoil for a Bilinear, Rectangular Element

Shape Functions

The shape functions for the bilinear rectangular element shown in

Fig 46 are given by

where -- $°' Coordinates are the local nodal coordi-

nates of node .

Elemental Equations

The weak solution of the governing differential equation written

in elemental form is expressed by eq 58 as

\I-M . i± 3K 2.

i-M, -j-

+ It $A ~ ± (D-2)

where

we
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Ly

.4c

Ltb

PtI

-X -bX,+O

Fiue46 - Rectangular Elenm nt
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I;:N,, N

joyo

k :, Dij -- X NY,

-,x-"N Nil% X,

The local coordinates (1,61) are related to the global coordinates

, , )by the tranformtion equations

Using these expressions the elemental equations can be witten in

local coordinates to give
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The first three matrices are dependent only on the size of the element

and are not related directly to any particular airfoil contour. Sub-

stituting the shape functions, eq D-L. into these expressions and letting

will produce the following results:
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Matrices D j and E £j and vector ." are directly dependent upon

the airfoil contour being considered. These quantities are evaluated

only for elements that share a conmon boundary with the contour. Thus

for most elements in the domain these qualities are zero.

Symmetric Flow. Consider a parabolic-arc airfoil with thickness

distribution given by

::J: Ix) I~-'') 3~ (D-4)
'.1

For this airfoil the remaining quantities in eq D-2 become

0 0 0

0 0 0 0

o 0 E -E

o c F -F

0 0 0 0

o 0 0 -

oo 0 -
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Pressure Distribution

For steady small disturbance theory the coefficient of pressure

is given by

The velocity in element e is calculated from the assumed solution for

the potential given by eq 57

z N'x,\j(57)

From thin airfoil theory the pressure coefficient is evaluated along

-O Thus for element P_ which borders the airfoil contour the

elemental pressure coefficient becomes

e

Using the transformation equations between the (X,V ) and

coordinates, given by eq D-3, and substituting eq 57 gives

e e

or
e e e

Within element e the pressure is a constant value which means there

are "jumps" in pressure between elements along the airfoil surface. This

implies that the pressure distribution along -o + is a step function.

For most of the distributions of the pressure coefficient given in
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Chapter VI the value of pressure coefficient computed from eq D-5 is

plotted at the midpoint of the element.

Mach Number

The local Mach number is defined by M- V/OLS where Ds is the local

speed of sound given by

The Mach number becomes

-qd. --_ _ __ __ _(D-6)

The velocity V is given by V = I+ UUr. In element e

(-4) ( + 4, -(,)

Transforming to local coordinates (C,;) gives

[t4) (1-+~ C02 03

Substituting this expression into eq D-6 will define the Mach number

in element e For the bilinear element Mach number will be discon-

tinuous across inter-element boundaries.
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